Search results for "Fixed Points"
showing 10 items of 29 documents
Common Fixed Points in a Partially Ordered Partial Metric Space
2013
In the first part of this paper, we prove some generalized versions of the result of Matthews in (Matthews, 1994) using different types of conditions in partially ordered partial metric spaces for dominated self-mappings or in partial metric spaces for self-mappings. In the second part, using our results, we deduce a characterization of partial metric 0-completeness in terms of fixed point theory. This result extends the Subrahmanyam characterization of metric completeness.
Common fixed points in generalized metric spaces
2012
Abstract We establish some common fixed point theorems for mappings satisfying a ( ψ , φ ) -weakly contractive condition in generalized metric spaces. Presented theorems extend and generalize many existing results in the literature.
Fixed point results for F-contractive mappings of Hardy-Rogers-type
2014
Recently, Wardowski introduced a new concept of contraction and proved a fixed point theorem which generalizes Banach contraction principle. Following this direction of research, in this paper, we will present some fixed point results of Hardy-Rogers-type for self-mappings on complete metric spaces or complete ordered metric spaces. Moreover, an example is given to illustrate the usability of the obtained results.
Fixed point and homotopy results for mixed multi-valued mappings in 0-complete partial metric spaces*
2015
We give sufficient conditions for the existence of common fixed points for a pair of mixed multi-valued mappings in the setting of 0-complete partial metric spaces. An example is given to demonstrate the usefulness of our results over the existing results in metric spaces. Finally, we prove a homotopy theorem via fixed point results.
Uniformly nonsquare Banach spaces have the fixed point property for nonexpansive mappings
2006
Abstract It is shown that if the modulus Γ X of nearly uniform smoothness of a reflexive Banach space satisfies Γ X ′ ( 0 ) 1 , then every bounded closed convex subset of X has the fixed point property for nonexpansive mappings. In particular, uniformly nonsquare Banach spaces have this property since they are properly included in this class of spaces. This answers a long-standing question in the theory.
Suzukiʼs type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces
2012
Abstract Recently, Suzuki [T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008) 1861–1869] proved a fixed point theorem that is a generalization of the Banach contraction principle and characterizes the metric completeness. In this paper we prove an analogous fixed point result for a self-mapping on a partial metric space or on a partially ordered metric space. Our results on partially ordered metric spaces generalize and extend some recent results of Ran and Reurings [A.C.M. Ran, M.C. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004…
Fixed point for cyclic weak (\psi, C)-contractions in 0-complete partial metric spaces
2013
In this paper, following (W.A. Kirk, P.S. Srinivasan, P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, 4 (2003), 79-89), we give a fixed point result for cyclic weak (ψ,C)-contractions on partial metric space. A Maia type fixed point theorem for cyclic weak (ψ,C)-contractions is also given.
Nonlinear psi-quasi-contractions of Ciric-type in partial metric spaces
2012
In this paper we obtain results of fixed and common fixed points for self-mappings satisfying a nonlinear contractive condition of Ciric-type in the framework of partial metric spaces. We also prove results of fixed point for self-mappings satisfying an ordered nonlinear contractive condition in the setting of ordered partial metric spaces.
Generalization of the Den Hartog model and rule-of-thumb formulas for optimal tuned mass dampers
2022
In recent years, the need of improving safety standards for both existing and new buildings against earthquake and wind loads has created a growing interest in the use of the so-called tuned mass dampers, exploited to control, in active or passive way, the dynamic response of structures. To design and optimize tuned mass damper systems, the effective analytical procedure proposed by Den Hartog in his seminal work (Den Hartog, 1985) has been widely adopted over the years, without including damping of the main structure. However, in many cases of engineering interest, the damping of the primary system plays a key role in the overall mechanical response, with the result of an increase in compl…
Multiplicity of positive solutions for a degenerate nonlocal problem with p-Laplacian
2021
Abstract We consider a nonlinear boundary value problem with degenerate nonlocal term depending on the L q -norm of the solution and the p-Laplace operator. We prove the multiplicity of positive solutions for the problem, where the number of solutions doubles the number of “positive bumps” of the degenerate term. The solutions are also ordered according to their L q -norms.