Search results for "Flatness"

showing 3 items of 23 documents

Flat lightlike hypersurfaces in Lorentz–Minkowski 4-space

2009

Abstract The lightlike hypersurfaces in Lorentz–Minkowski space are of special interest in Relativity Theory. In particular, the singularities of these hypersurfaces provide good models for the study of different horizon types. We introduce the notion of flatness for these hypersurfaces and study their singularities. The classification result asserts that a generic classification of flat lightlike hypersurfaces is quite different from that of generic lightlike hypersurfaces.

Pure mathematicsMathematics::Complex VariablesLorentz transformationMathematical analysisGeneral Physics and AstronomySpace (mathematics)General Relativity and Quantum Cosmologysymbols.namesakeMathematics::Algebraic GeometryTheory of relativityClassification resultMinkowski spaceHorizon (general relativity)symbolsGravitational singularityMathematics::Differential GeometryGeometry and TopologyMathematical PhysicsFlatness (mathematics)MathematicsJournal of Geometry and Physics
researchProduct

Microstructured Optical Fiber on the Silica Platform for pulse-maintaining 2-octave supercontinuum in short-wavelength infra-red

2016

Numerical design of all normal dispersion fiber for SWIR supercontinuum generation based on standard air-silica microstructure is presented. We increase the spectral width of generated supercontinuum up to 2 octaves while maintaining perfect spectral flatness by tailoring the dispersion profile.

WavelengthZero-dispersion wavelengthMaterials scienceOpticsbusiness.industryDispersion (optics)Spectral widthPhysics::OpticsSpectral flatnessMicrostructured optical fiberSelf-phase modulationbusinessSupercontinuumLatin America Optics and Photonics Conference
researchProduct

Hölder regularity for the gradient of the inhomogeneous parabolic normalized p-Laplacian

2018

In this paper, we study an evolution equation involving the normalized [Formula: see text]-Laplacian and a bounded continuous source term. The normalized [Formula: see text]-Laplacian is in non-divergence form and arises for example from stochastic tug-of-war games with noise. We prove local [Formula: see text] regularity for the spatial gradient of the viscosity solutions. The proof is based on an improvement of flatness and proceeds by iteration.

viscosity solutionsApplied MathematicsGeneral Mathematicsta111010102 general mathematicsMathematical analysisparabolic01 natural sciencesNoise (electronics)non-homogeneouslocal C-alpha regularityTerm (time)010101 applied mathematicsViscosityBounded functionNon homogeneousEvolution equationp-Laplacian0101 mathematicsnormalized p-LaplacianFlatness (mathematics)MathematicsCommunications in Contemporary Mathematics
researchProduct