Search results for "Flax"

showing 10 items of 60 documents

Experimental design of the bearing performances of flax fiber reinforced epoxy composites by a failure map

2018

Abstract This paper represents the first effort aimed to the investigation of the pin/hole contact stress and failure mechanisms of epoxy composites reinforced with woven flax fabrics, underwent to tensile bearing tests. In particular, the maximum loads and failure modes are evaluated at varying the laminate geometrical configuration. In order to optimize the use of polymer composites reinforced with flax fibers in structural applications, an experimental failure map, identifying main failure modes of mechanically fastened joints, is obtained as function of hole diameter, distance of the hole from the free edge of the laminate and laminate width. Moreover, a theoretical approach based on th…

Materials science02 engineering and technologyMechanical jointFlax compositeIndustrial and Manufacturing Engineeringlaw.inventionFlax fiber0203 mechanical engineeringlawUltimate tensile strengthComposite materialBearing (mechanical)Mechanical EngineeringFailure modeEpoxyComposite laminates021001 nanoscience & nanotechnologyBearing; Failure modes; Flax composites; Mechanical joints; Natural fibers; Ceramics and Composites; Mechanics of Materials; Mechanical Engineering; Industrial and Manufacturing EngineeringSettore ING-IND/22 - Scienza E Tecnologia Dei Materiali020303 mechanical engineering & transportsContact mechanicsMechanics of Materialsvisual_artMechanical jointBearingCeramics and CompositesFracture (geology)visual_art.visual_art_mediumNatural fibers0210 nano-technologyComposites Part B: Engineering
researchProduct

Bearing strength and failure behavior of pinned hybrid glass-flax composite laminates

2018

Abstract The aim of the present work is to evaluate the influence of external layers of glass woven fabric on the pin-hole strength of flax/epoxy laminates. Single lap bearing tests were carried out to evaluate the fastened joint performances depending on laminate stacking sequence. In order to better identify the mechanical behavior of the hybrid laminate, full glass and flax laminates were also compared. In particular, bearing stress and failure mechanisms were investigated at varying joint geometry. Furthermore, an experimental failure map, clustering main failure modes of pinned hybrid composite laminate, was used to better clarify the relationship between mechanical failure and geometr…

Materials scienceBearing; Failure modes; Flax; Glass; Hybrid laminate; Mechanical joints; Organic Chemistry; Polymers and PlasticsPolymers and PlasticsComposite number02 engineering and technologyMechanical jointlaw.inventionStress (mechanics)Hybrid laminate0203 mechanical engineeringlawWoven fabricFlaxBearing capacityComposite materialBearing (mechanical)Organic ChemistryFailure modeEpoxyComposite laminates021001 nanoscience & nanotechnology020303 mechanical engineering & transportsSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiMechanical jointvisual_artBearingvisual_art.visual_art_mediumGla0210 nano-technology
researchProduct

Evolution of the bearing failure map of pinned flax composite laminates aged in marine environment

2020

Abstract Aim of the present paper is to evaluate how the bearing behavior of pinned flax composites can be influenced by their exposition to critical environment such as marine one. To this scope, flax fibers/epoxy pinned laminate was exposed up to 60 days to salt-fog environment, according to ASTM B 117 standard. In particular, samples having different hole diameter (D), laminate width (W), and hole center to laminate free edge distance (E) have been tested under single lap bearing tests at varying the aging exposition time. Following this procedure, an experimental 2D failure map clustering main failure modes was created by placing the experimental results in the plane E/D versus W/D rati…

Materials scienceComposite number02 engineering and technologyMechanical joint010402 general chemistry01 natural sciencesIndustrial and Manufacturing Engineeringlaw.inventionlawFlaxUltimate tensile strengthComposite materialBearing (mechanical)Tension (physics)Mechanical EngineeringFailure modeEpoxyComposite laminates021001 nanoscience & nanotechnology0104 chemical sciencesShear (sheet metal)Salt fog agingMechanics of Materialsvisual_artBearingBearing; Failure modes; Flax; Mechanical joints; Salt fog agingCeramics and Compositesvisual_art.visual_art_mediumFracture (geology)0210 nano-technologyComposites Part B: Engineering
researchProduct

Impact behaviour of flax/epoxy composite plates

2015

This paper presents an experimental investigation of the impact behaviour of flax/epoxy composite plates submitted to low-velocity transverse impact. Low energy drop-weight impact tests have been performed on two types of quasi-isotropic flax/epoxy composites, rectangularly shaped with edges lengths of 142 mm × 94 mm and 2.85 mm thick. Residual properties have been assessed by compression after impact tests. A detailed description of damage development, especially the increase of the rear face crack with respect to the impact energy is given by the microscopic observation. The influence of impact damage on the residual strength is described. A loss of 15%–30% in compression resistance was n…

Materials scienceComposite numberDamage toleranceAerospace EngineeringOcean EngineeringBendingDamage mechanicsDamage mechanicsStructural compositesMécanique: Mécanique des matériaux [Sciences de l'ingénieur]Composite materialSafety Risk Reliability and QualityImpact behaviourCivil and Structural EngineeringMécanique [Sciences de l'ingénieur]Mechanical EngineeringEpoxyCompression (physics)Flax fibreResidual strengthTransverse planeMechanics of Materialsvisual_artAutomotive Engineeringvisual_art.visual_art_mediumDamage toleranceInternational Journal of Impact Engineering
researchProduct

A simplified predictive approach to assess the mechanical behavior of pinned hybrid composites aged in salt-fog environment

2020

Abstract Aim of this paper is to assess the predictive capabilities of a simplified theoretical approach on the failure load of aged pinned hybrid composites. In particular, the mechanical performances of glass-flax hybrid epoxy laminates exposed to salt spray fog environment, were used as input data in order to address the analytical model. Preliminarily, the relationship among mechanical performances, failure mechanisms, joint geometry and ageing time, was evaluated by double-lap joint tests on pinned samples at varying joint geometry and ageing time. The bearing and shear out limit stress of samples aged for 60 days under the salt-fog environment underwent a reduction of about 20% compar…

Materials scienceHybrid composite laminatesComposite number02 engineering and technologylaw.inventionStress (mechanics)Bearing; Failure modes; Flax; Hybrid composite laminates; Salt-fog aging0203 mechanical engineeringlawFlaxComposite materialJoint (geology)Reliability (statistics)Civil and Structural EngineeringBearing (mechanical)Failure modeEpoxy021001 nanoscience & nanotechnologyShear (sheet metal)020303 mechanical engineering & transportsSettore ING-IND/22 - Scienza E Tecnologia Dei Materialivisual_artBearingCeramics and Compositesvisual_art.visual_art_mediumsalt‐fog aging0210 nano-technologyReduction (mathematics)
researchProduct

A comparative study of fatigue behaviour of flax/epoxy and glass/epoxy composites

2012

Experimental investigations on flax and glass fabrics reinforced epoxy specimens, i.e. FFRE and GFRE, submitted to fatigue tests are presented in this paper. Samples having [0/90]3S and [±45]3S stacking sequences, with similar fibre volume fractions have been tested under tension–tension fatigue loading. The specific stress-number of cycles to failure (S–N) curves, show that for the [0/90]3S specimens, FFRE have lower fatigue endurance than GFRE, but the [±45]3S FFRE specimens offer better specific fatigue endurance than similar GFRE, in the studied life range (<2 × 10^6). Overall, the three-stage stiffness degradation is observed in all cases except for [0/90]3S FFRE specimens, which prese…

Materials scienceMatériaux [Sciences de l'ingénieur]A. Polymer–matrix composites (PMCs)[ SPI.MAT ] Engineering Sciences [physics]/MaterialsGlass epoxy[ SPI.MECA.STRU ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of the structures [physics.class-ph]02 engineering and technology[SPI.MAT]Engineering Sciences [physics]/Materials0203 mechanical engineeringFLAX FIBERS[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]B. FatigueComposite materialMécanique: Mécanique des matériaux [Sciences de l'ingénieur]Mécanique: Mécanique des structures [Sciences de l'ingénieur]B. Mechanical propertiesGeneral EngineeringA. Glass fibresEpoxy021001 nanoscience & nanotechnologyStiffening020303 mechanical engineering & transportsStiffness degradationCreep[SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph]visual_art[ CHIM.MATE ] Chemical Sciences/Material chemistry[ SPI.MECA.MEMA ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]Fatigue loadingCeramics and Compositesvisual_art.visual_art_mediumFlax fibres0210 nano-technologyCREEP
researchProduct

Influence of sodium bicarbonate treatment on the aging resistance of natural fiber reinforced polymer composites under marine environment

2019

Abstract Aim of the current study is to investigate how an innovative and eco-friendly chemical treatment based on sodium bicarbonate solution (10 wt%) can improve the aging resistance in marine environment of epoxy based composites, reinforced with flax and jute fibers. To this scope, treated and untreated fiber reinforced composites were manufactured through vacuum infusion technique. The resulting composites were then exposed to salt-fog spray conditions up to 60 days, according to ASTM B117 standard. The assessment of their durability was made by means of tensile, flexural quasi-static tests and Charpy impact tests. Furthermore, the water uptake evolution of each composite was monitored…

Materials sciencePolymers and PlasticsCharpy impact test02 engineering and technologyFiber-reinforced composite010402 general chemistry01 natural sciencesJutechemistry.chemical_compoundFlexural strengthFlaxUltimate tensile strengthSalt-fog expositionComposite materialSodium bicarbonate treatmentNatural fiberMarine environmentSodium bicarbonateOrganic ChemistryEpoxy021001 nanoscience & nanotechnologyDurabilityFlax; Green composites; Jute; Marine environment; Salt-fog exposition; Sodium bicarbonate treatment0104 chemical scienceschemistryvisual_artvisual_art.visual_art_mediumGreen composite0210 nano-technology
researchProduct

Pinned hybrid glass-flax composite laminates aged in salt-fog environment: Mechanical durability

2019

The aim of the present paper is to study the mechanical performance evolution of pinned hybrid glass-flax composite laminates under environment aging conditions. Hybrid glass-flax fibers/epoxy pinned laminates were exposed to salt-spray fog environmental conditions up to 60 days. With the purpose of assessing the relationship between mechanical performances and failure mechanisms at increasing aging time, single lap joints at varying joint geometry (i.e., hole diameter D and hole distance E from free edge) were characterized after 0 days (i.e., unaged samples), 30 days, and 60 days of salt-fog exposition. Based on this approach, the property&ndash

Materials sciencePolymers and PlasticsComposite number02 engineering and technologyBearing; Failure modes; Glass-flax hybrid coposites; Pinned joints; Salt fog aging010402 general chemistry01 natural sciencesFailure modesArticlelcsh:QD241-441lcsh:Organic chemistryFlexural strengthGlass-flax hybrid copositesComposite materialJoint (geology)Natural fiberPinned jointsFailure modeGeneral ChemistryEpoxyComposite laminates021001 nanoscience & nanotechnologyDurabilityGlass-flax hybrid compositePinned joint0104 chemical sciencesSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiLap jointSalt fog agingvisual_artBearingvisual_art.visual_art_medium0210 nano-technology
researchProduct

Effect of glass fiber hybridization on the durability in salt-fog environment of pinned flax composites

2021

The aim of the present paper is to evaluate the effect of the hybridization with external layers of glass fibers on the durability of flax fiber reinforced composites in severe aging conditions. To this scope, full glass, full flax and hybrid glass–flax pinned laminates were exposed to a salt-fog environment for up to 60 days. Double-lap pinned joint tests were performed to assess the pin-hole joints performances at varying the laminate stacking sequence. In order to better discriminate the relationship between the mechanical behavior and the fracture mechanisms of joints at increasing the aging time, different geometries (i.e., by varying both the hole diameter D and the free edge distance…

Materials sciencePolymers and PlasticsHybrid composite laminatesGlass fiberStackingOrganic chemistrySalt-fog agingFailure modesArticlelaw.inventionFlax fiberBearing; Failure modes; Flax; Hybrid composite laminates; Salt-fog agingbearing; salt-fog aging; flax; failure modes; hybrid composite laminatesQD241-441lawFlaxBearing capacityComposite materialJoint (geology)Bearing (mechanical)General ChemistryDurabilitySettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiBearingFracture (geology)Bearing Failure modes Flax Hybrid composite laminates Salt-fog aging
researchProduct

An Innovative Treatment Based on Sodium Citrate for Improving the Mechanical Performances of Flax Fiber Reinforced Composites

2021

The goal of this paper is to evaluate the effectiveness of a cost-effective and eco-friendly treatment based on the use of sodium citrate (Na3C6H5O7) on the mechanical properties of flax fiber reinforced composites. To this scope, flax fibers were soaked in mildly alkaline solutions of the sodium salt at different weight concentration (i.e., 5%, 10% and 20%) for 120 h at 25 °C. The modifications on fibers surface induced by the proposed treatment were evaluated through Fourier transform infrared analysis (FTIR), whereas scanning electron microscope (SEM) and helium pycnometer were used to obtain useful information about composites morphology. The effect of the concentration of the treating …

Materials sciencePolymers and PlasticsScanning electron microscopeflaxchemical treatmentCharpy impact test02 engineering and technologymechanical properties010402 general chemistrysodium citrate01 natural sciencesArticlefiber–matrix adhesionlcsh:QD241-441chemistry.chemical_compoundnatural fiberslcsh:Organic chemistryFlexural strengthUltimate tensile strengthSodium citrateComposite materialFourier transform infrared spectroscopyGeneral ChemistryDynamic mechanical analysis021001 nanoscience & nanotechnology0104 chemical sciencesChemical treatment Fiber-matrix adhesion Flax Mechanical properties Natural fibers Sodium citrateSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryVoid (composites)0210 nano-technologyPolymers
researchProduct