Search results for "Flow Rate"

showing 10 items of 166 documents

Prediction models to analyse the performance of a commercial-scale membrane distillation unit for desalting brines from RO plants

2018

Abstract Desalting brines from Reverse Osmosis (RO) plants is one of the most promising applications of Membrane Distillation (MD) systems. The development of accurate models to predict MD system performances plays a significant role in the design of this kind of industrial applications. In this paper, a commercial-scale Permeate-Gap Membrane Distillation (PGMD) module was modelled by means of two different approaches: Response Surface Methodology (RSM) and Artificial Neural Networks (ANN). Condenser inlet temperature, evaporator inlet temperature, feed flow rate and feed water salt concentration were selected as inputs of the model, while permeate flux and Specific Thermal Energy Consumpti…

Mean squared errorbusiness.industryMechanical EngineeringGeneral Chemical EngineeringEvaporator (marine)02 engineering and technologyGeneral Chemistry021001 nanoscience & nanotechnologyMembrane distillationVolumetric flow rate020401 chemical engineeringEnvironmental scienceGeneral Materials ScienceResponse surface methodology0204 chemical engineering0210 nano-technologybusinessProcess engineeringReverse osmosisCondenser (heat transfer)Thermal energyWater Science and TechnologyDesalination
researchProduct

Nitrogen recovery using a membrane contactor: Modelling nitrogen and pH evolution

2020

[EN] A hollow fibre membrane contactor has been applied for nitrogen recovery from anaerobic digestion supernatant at different operating conditions obtaining nitrogen recovery efficiencies over 99 %. A mathematical model able to represent the time evolution of pH and nitrogen concentration during the recovery process is presented in this paper. The developed model accurately reproduced the results obtained in 26 experiments carried out at different pH values (from 9 to 11), temperatures (from 25 to 35 degrees C), membrane surfaces (from 1.2 to 2.4 m(2)) and feed flow rates (from 0.33 x 10(-5) to 5.83 x 10(-5) m(3)/s) predicting the variations in nitrogen recovery rates measured at the diff…

Membrane contactor for nitrogen recoverychemistry.chemical_elementPH modelling02 engineering and technologyAmmonia recovery010501 environmental sciences01 natural sciencesNutrient recovery from anaerobic digestionChemical Engineering (miscellaneous)Waste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesContactorNitrogen recovery modellingChemistryProcess Chemistry and Technology021001 nanoscience & nanotechnologyAlkali metalPollutionNitrogenVolumetric flow rateAnaerobic digestionMembraneChemical engineeringReagentScientific method0210 nano-technologyJournal of Environmental Chemical Engineering
researchProduct

Observable Quantities for Electrodiffusion Processes in Membranes

2008

Electrically driven ion transport processes in a membrane system are analyzed in terms of observable quantities, such as the apparent volume flow, the time dependence of the electrolyte concentration in one cell compartment, and the electrical potential difference between the electrodes. The relations between the fluxes and these observable quantities are rigorously deduced from balances for constituent mass and solution volume. These relations improve the results for the transport coefficients up to 25% with respect to those obtained using simplified expressions common in the literature. Given the practical importance of ionic transport numbers and the solvent transference number in the ph…

MembraneVolume (thermodynamics)ChemistryMaterials ChemistryThermodynamicsObservableElectrolyteElectric potentialPhysical and Theoretical ChemistryElectric currentIon transporterSurfaces Coatings and FilmsVolumetric flow rateThe Journal of Physical Chemistry B
researchProduct

Origin and correction of the deviations in retention times at increasing flow rate with Chromolith columns.

2010

Chromoliths can be used at flow rates beyond those feasible for conventional microparticulate packed columns. Ideally, the plots of the retention time versus the inverse of delivered flow rate should exhibit y-intercept of zero. However, significant positive deviations correlating with the solute polarity were observed for several compounds chromatographed with a Chromolith column, owing to the increased system pressure. Consequently, the dead time marker exhibits a smaller deviation, making the retention factors depend on the flow rate. Chromoliths are made of a silica-based monolith encapsulated within a PEEK tube, and should suffer larger stress with pressure than stainless steel columns…

Monolithic HPLC columnAcetonitrilesPolymersAnalytical chemistryBiochemistryAnalytical ChemistryPolyethylene GlycolsStress (mechanics)PropanolaminesBenzophenonesPeekMonolithChromatography High Pressure Liquidgeographygeography.geographical_feature_categoryChromatographyChemistryOrganic ChemistryGeneral MedicineDead timeKetonesSilicon DioxideVolumetric flow rateVolume (thermodynamics)Linear ModelsBar (unit)Journal of chromatography. A
researchProduct

Economic analysis of the scale-up and implantation of a hollow fibre membrane contactor plant for nitrogen recovery in a full-scale wastewater treatm…

2021

[EN] Nitrogen recovery technologies such as the hollow fibre membrane contactor are now being developed. However, an economic analysis is needed prior to their full-scale application in wastewater treatment plants. The aim of this study was to analyse the economic and environmental aspects of scaling-up this method. To achieve it, a full-scale 40,000 m3·day¿1-wastewater treatment plant influent flow rate was simulated jointly with a membrane contactor plant to evaluate the minimum costs of optimum operating conditions of membrane contactors (pH, feed flow rate and membrane surface). The optimum conditions for treating 600 m3·day¿1 of reject water was found to be 10 pH, 0.08 m3·s¿1 feed flow…

Nitrogen recoveryHollow fibre membrane contactorchemistry.chemical_elementFiltration and SeparationMembrane contactor modelling02 engineering and technologyAnalytical ChemistryAmmoniachemistry.chemical_compound020401 chemical engineering0204 chemical engineeringGlobal warming potential in wastewater treatmentTECNOLOGIA DEL MEDIO AMBIENTEContactorEconomic analysis021001 nanoscience & nanotechnologyPulp and paper industryNitrogenVolumetric flow rateMembranechemistrySCALE-UPEnvironmental scienceSewage treatmentAeration0210 nano-technology
researchProduct

DNP in MRI: an in-bore approach at 1.5 T.

2011

Abstract We have used liquid state (“Overhauser”) Dynamic Nuclear Polarization (DNP) to significantly enhance the signal to noise ratio (SNR) of Magnetic Resonance Imaging (MRI). For the first time this was achieved by hyperpolarizing directly in the MRI-scanner field of 1.5 T in continuous flow mode and immediately delivering the hyperpolarized substance to the imaging site to ensure maximum contrast between hyperpolarized sample and sample at thermal polarization. We achieve a maximum absolute signal enhancement factor of 98; while the hyperpolarized sample is transported at a flow rate of up to 30 ml/h yielding an average flow speed up to 470 mm/s over a distance of approximately 80 mm. …

Nuclear and High Energy PhysicsContrast enhancementMagnetic Resonance Spectroscopymedicine.diagnostic_testContinuous flowChemistryPhantoms ImagingBiophysicsMagnetic resonance imagingSignal-To-Noise RatioCondensed Matter PhysicsPolarization (waves)BiochemistryMagnetic Resonance ImagingVolumetric flow rateSignal enhancementCyclic N-OxidesLiquid stateNuclear magnetic resonanceFlow velocitymedicineImage Processing Computer-AssistedSpin LabelsMicrowavesCopperJournal of magnetic resonance (San Diego, Calif. : 1997)
researchProduct

A semi-empirical approach for predicting two-phase flow discharge through branches of various orientations connected to a horizontal main pipe

2010

Abstract The subdivision of two-phase flow in branching conduits consisting of a large horizontal main pipe with upward, downward, or lateral branches of reduced diameter is of great interest in various technological fields. For example, these conduits are important in light-water nuclear reactors (LWRs) in the case of a small break loss-of-coolant accident (SBLOCA) in a leg of the reactor's primary coolant loops, as well as for breaks or valve malfunctions in a large pipeline. In these kinds of circumstances, the relevant phenomenology often involves phase stratification coupled with possible liquid entrainment or gas pool-through phenomena. Therefore, these phenomena were studied in depth…

Nuclear and High Energy PhysicsEngineeringStratification (water)STRATIFIED FLOWREGIONElectrical conduitTUBESSMALL BREAKForensic engineeringMass flow rateGeneral Materials ScienceDUAL DISCHARGESafety Risk Reliability and QualityWaste Management and DisposalINCLINED PLANESettore ING-IND/19 - Impianti NucleariSubdivisionPressure dropONSETSbusiness.industryMechanical EngineeringMechanicsLIQUID ENTRAINMENTCoolantNuclear Energy and EngineeringGASPATTERNSTwo-phase flowbusinessNuclear Engineering and Design
researchProduct

On the numerical assessment of the thermal-hydraulic operating map of the DEMO Divertor Plasma Facing Components cooling circuit

2020

Abstract Within the framework of the Work Package DIV 1 - “Divertor Cassette Design and Integration” of the EUROfusion action, a research campaign has been jointly carried out by University of Palermo and ENEA to investigate the thermal-hydraulic behaviour of the DEMO divertor cassette cooling system, focussing the attention on the 2018 configuration of the Plasma Facing Components (PFCs) circuit consistent with the DEMO baseline 2017. The research campaign has been carried out following a theoretical-computational approach based on the finite volume method and adopting the commercial Computational Fluid-Dynamic (CFD) code ANSYS CFX. A steady-state CFD analysis has been carried out for the …

Nuclear engineeringComputational fluid dynamics01 natural sciences010305 fluids & plasmasThermal hydraulicsDivertor0103 physical sciencesMass flow rateWater coolingGeneral Materials ScienceTotal pressure010306 general physicsDEMOPlasma facing componentsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringThermofluid-dynamicsCritical heat fluxbusiness.industryMechanical EngineeringDivertorCoolantNuclear Energy and EngineeringEnvironmental sciencebusinessCFD analysisFusion Engineering and Design
researchProduct

Storm sewer pressurization transient – an experimental investigation

2014

Pipe pressurization is examined experimentally by 144 laboratory experiments in a circular tilting pipe between two tanks, in which the transient was triggered by sudden closing of the downstream tank outlet. The experiments cover ranges of values of slope, velocity and filling ratio of the open-channel flow not explored in previous studies. Situations involving considerable air quantity and consequent intense pressure oscillations were also reproduced. Two different pressurization patterns, defined as “smooth” and “abrupt”, were observed, but only the abrupt pattern produced intense pressure oscillations. The comparison among all the abrupt pressurization surges showed how the oscillations…

OscillationFlow (psychology)StormVolumetric flow rateSettore ICAR/01 - IdraulicaPhysics::Fluid DynamicsFilling ratioCabin pressurizationEnvironmental scienceAir–water flow pressurization storm sewer system transition unsteady flow urban drainageGeotechnical engineeringTransient (oscillation)Intensity (heat transfer)Water Science and TechnologyCivil and Structural Engineering
researchProduct

PDMS membranes for feasible recovery of dissolved methane from AnMBR effluents

2020

[EN] This study aimed to evaluate the feasibility of degassing membrane (DM) technology for recovering dissolved methane from AnMBR effluents. For that purpose, a PDMS membrane module was operated for treating the effluent from an AnMBR prototype-plant, which treated urban wastewater (UWW) at ambient temperature. Different transmembrane pressures and liquid flow rates were applied for evaluating methane recovery efficiency. Maximum methane recoveries were achieved when increasing the vacuum pressure and reducing the liquid flow rate, reaching a maximum methane recovery efficiency of around 80% at a transmembrane pressure (TMP) of 0.8 bars and a treatment flow rate (Q(L)) of 50 L h(-1). The …

Payback periodFiltration and Separation02 engineering and technology010402 general chemistry01 natural sciencesBiochemistryMethanechemistry.chemical_compoundGeneral Materials SciencePhysical and Theoretical ChemistryEffluentTECNOLOGIA DEL MEDIO AMBIENTEPDMS degassing MembraneTreated waterAnaerobic membrane bioreactor (AnMBR)Urban wastewaterMethane recovery021001 nanoscience & nanotechnologyPulp and paper industry0104 chemical sciencesVolumetric flow rateGreenhouse gas (GHG)MembranechemistryWastewaterGreenhouse gasEnvironmental science0210 nano-technology
researchProduct