Search results for "Fluid-structure interaction"

showing 6 items of 16 documents

Biomechanical implications of excessive endograft protrusion into the aortic arch after thoracic endovascular repair

2015

Endografts placed in the aorta for thoracic endovascular aortic repair (TEVAR) may determine malappositioning to the lesser curvature of the aortic wall, thus resulting in a devastating complication known as endograft collapse. This premature device failure commonly occurs in young individuals after TEVAR for traumatic aortic injuries as a result of applications outside the physical conditions for which the endograft was designed. In this study, an experimentally-calibrated fluid-structure interaction (FSI) model was developed to assess the hemodynamic and stress/strain distributions acting on the excessive protrusion extension (PE) of endografts deployed in four young patients underwent TE…

AdultMaleAortic archmedicine.medical_specialtyHemodynamicsAorta ThoracicHealth InformaticsProsthesis DesignBlood Vessel Prosthesis ImplantationYoung AdultAortic aneurysmBlood vessel prosthesismedicine.arteryInternal medicineFluid-structure interactionStentHumansMedicineThoracic aortaStent-graftHemodynamicEndovascular ProcedureAortaAortic Aneurysm Thoracicbusiness.industryEndovascular ProceduresHemodynamicsmedicine.diseaseCurvatures of the stomachBlood Vessel ProsthesisComputer Science ApplicationsSurgeryAlgorithmRadiographyDescending aortaCalibrationCardiologyEndograft collapse/infoldingStentsStress MechanicalThoracic endovascular aortic repair (TEVAR)businessAlgorithmsBird-beakHumanComputers in Biology and Medicine
researchProduct

On the existence of weak solution to the coupled fluid-structure interaction problem for non-Newtonian shear-dependent fluid

2016

We study the existence of weak solution for unsteady fluid-structure interaction problem for shear-thickening flow. The time dependent domain has at one part a flexible elastic wall. The evolution of fluid domain is governed by the generalized string equation with action of the fluid forces. The power-law viscosity model is applied to describe shear-dependent non-Newtonian fluids.

Dilatant35D30General MathematicsConstant Viscosity Elastic (Boger) Fluidsfluid-structure interactionhemodynamics01 natural sciencesexistence of weak solutionPhysics::Fluid Dynamics76A0576D03Fluid–structure interactionshear-thinning fluids0101 mathematicsMathematicsWeak solution010102 general mathematicsMechanicsnon-Newtonian fluidsNon-Newtonian fluid010101 applied mathematicsShear rateCondensed Matter::Soft Condensed Matter74F10Shear (geology)Generalized Newtonian fluidshear-thickening fluids35Q30
researchProduct

Mechanics of Moving Materials

2014

stabiilisuusaxially movingoptimointiaksiaalisesti liikkuvaneste-rakennekytkentäfluid-structure interactionmurtumamekaniikkastabilityoptimizationmurtumismekaniikka
researchProduct

Time-harmonic solution for acousto-elastic interaction with controllability and spectral elements

2010

The classical way of solving the time-harmonic linear acousto-elastic wave problem is to discretize the equations with finite elements or finite differences. This approach leads to large-scale indefinite complex-valued linear systems. For these kinds of systems, it is difficult to construct efficient iterative solution methods. That is why we use an alternative approach and solve the time-harmonic problem by controlling the solution of the corresponding time dependent wave equation. In this paper, we use an unsymmetric formulation, where fluid-structure interaction is modeled as a coupling between pressure and displacement. The coupled problem is discretized in space domain with spectral el…

ControllabilityDiscretizationSpectral element methodfluid-structure interactionspectral element methodacoustic wavescoupled problemTime-harmonic solutioncontrollabilityConjugate gradient methodFluid-structure interactionTime domainCoupled problemMathematicsElastic wavesSpectral element methodelastic wavestime-harmonic solutionApplied MathematicsMathematical analysisLinear systemFinite differenceFinite element methodControllabilityComputational MathematicsAcoustic wavesConjugate gradient algorithmconjugate gradient algorithmJournal of Computational and Applied Mathematics
researchProduct

NOVEL TOOLS FOR THE MECHANICAL ANALYSIS OF THIN PLATES AND RELEVANCE ON MEMBRANE-BASED TECHNOLOGIES

2020

Ion Exchange MembraneSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciProfiled MembraneFluid-Structure InteractionThin PlateMembraneMembrane DeformationReverse ElectrodialysiElectrodialysiMeshfree methodLine Element-Less MethodMaterial parameter identificationFluid redistribution.Settore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Pressure-Induced Deformation of Pillar-Type Profiled Membranes and Its Effects on Flow and Mass Transfer

2019

In electro-membrane processes, a pressure difference may arise between solutions flowing in alternate channels. This transmembrane pressure (TMP) causes a deformation of the membranes and of the fluid compartments. This, in turn, affects pressure losses and mass transfer rates with respect to undeformed conditions and may result in uneven flow rate and mass flux distributions. These phenomena were analyzed here for round pillar-type profiled membranes by integrated mechanical and fluid dynamics simulations. The analysis involved three steps: (1) A conservatively large value of TMP was imposed, and mechanical simulations were performed to identify the geometry with the minimum pillar density…

ion exchange membraneMass fluxSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceGeneral Computer Sciencereverse electrodialysisFlow (psychology)fluid-structure interaction02 engineering and technologyDeformation (meteorology)Computational fluid dynamicsElectrodialysilcsh:QA75.5-76.95Theoretical Computer Sciencestructural mechanics020401 chemical engineeringMass transferReverse electrodialysimass transferFluid dynamicselectrodialysis0204 chemical engineeringSettore ING-IND/19 - Impianti Nuclearipressure dropprofiled membranebusiness.industryApplied MathematicsMechanics021001 nanoscience & nanotechnologyVolumetric flow rateMembraneModeling and Simulationlcsh:Electronic computers. Computer scienceSettore ICAR/08 - Scienza Delle CostruzioniCFD0210 nano-technologybusinessComputation
researchProduct