Search results for "Fluoresceins"

showing 10 items of 46 documents

Tetrabromobisphenol A (TBBPA)-stimulated reactive oxygen species (ROS) production in cell-free model using the 2′,7′-dichlorodihydrofluorescein diace…

2016

t Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant, applied in a variety of commercial and household products, mainly electronic ones. Since the production of reactive oxygen species (ROS) is considered one of the principal cytotoxicity mechanisms, numerous studies undertake that aspect of TBBPA’s mechanism of action. The present study verifies if the fluorogenic substrate 2′,7′- dichlorodihydrofluorescein diacetate (H2DCFDA) should be used to detect ROS production induced by TBBPA. To determine the ability of TBBPA alone to stimulate the conversion of H2DCFDA to its fluorescent product 2’, 7’- dichlorofluorescein (DCF), we used a cell-free model. In the experiments…

0301 basic medicineDPPHHealth Toxicology and MutagenesisPolybrominated BiphenylsCell-free system03 medical and health scienceschemistry.chemical_compound0302 clinical medicineH2DCFDAFree radicalDichlorofluoresceinEnvironmental ChemistryOrganic chemistryCytotoxicitychemistry.chemical_classificationReactive oxygen speciesCell-Free SystemROSFree Radical ScavengersGeneral MedicineFluoresceinsFree radical scavengerPollutionTBBPA030104 developmental biologychemistryBrominated flame retardantTetrabromobisphenol AReactive Oxygen Species030217 neurology & neurosurgeryResearch ArticleDPPHNuclear chemistryEnvironmental Science and Pollution Research
researchProduct

Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings

2016

Encoding of sensory inputs in the cortex is characterized by sparse neuronal network activation. Optogenetic stimulation has previously been combined with fMRI (ofMRI) to probe functional networks. However, for a quantitative optogenetic probing of sensory-driven sparse network activation, the level of similarity between sensory and optogenetic network activation needs to be explored. Here, we complement ofMRI with optic fiber-based population Ca2+ recordings for a region-specific readout of neuronal spiking activity in rat brain. Comparing Ca2+ responses to the blood oxygenation level-dependent signal upon sensory stimulation with increasing frequencies showed adaptation of Ca2+ transient…

0301 basic medicineGenetic VectorsPopulationOptogenetic fMRIChannelrhodopsinSensory systemStimulationOptogeneticsSomatosensory system03 medical and health sciences0302 clinical medicineChannelrhodopsinsTransduction GeneticBiological neural networkAnimalseducationEvoked PotentialsOptical FibersNeuronseducation.field_of_studyAniline CompoundsSensory stimulation therapyChemistrySomatosensory CortexOriginal Articlesoptical neurophysiologyFluoresceinsMagnetic Resonance ImagingRats Inbred F344calcium recordingsOptogeneticsOxygen030104 developmental biologyMicroscopy FluorescenceNeurologylight propagationCalciumFemalesparse network activationNeurology (clinical)Cardiology and Cardiovascular MedicineNeurosciencePhotic Stimulation030217 neurology & neurosurgeryJournal of Cerebral Blood Flow & Metabolism
researchProduct

In vivo fluorescent cercariae reveal the entry portals of Cardiocephaloides longicollis (Rudolphi, 1819) Dubois, 1982 (Strigeidae) into the gilthead …

2019

Background Despite their complex life-cycles involving various types of hosts and free-living stages, digenean trematodes are becoming recurrent model systems. The infection and penetration strategy of the larval stages, i.e. cercariae, into the fish host is poorly understood and information regarding their entry portals is not well-known for most species. Cardiocephaloides longicollis (Rudolphi, 1819) Dubois, 1982 (Digenea, Strigeidae) uses the gilthead seabream (Sparus aurata L.), an important marine fish in Mediterranean aquaculture, as a second intermediate host, where they encyst in the brain as metacercariae. Labelling the cercariae with in vivo fluorescent dyes helped us to track the…

0301 basic medicineGillCardiocephaloides longicollis030231 tropical medicineSuccinimidesZoologyAquacultureTrematode InfectionsCarboxyfluorescein diacetate succinimidyl esterDigeneaHost-Parasite Interactionslcsh:Infectious and parasitic diseasesFish Diseases03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCercarial penetration patternCercarial survival and activityMetacercarial encystmentAnimalsHelminthsMetacercariaelcsh:RC109-216CercariaCardiocephaloides longicollisFluorescent DyesInfectivityLife Cycle StagesbiologyResearchIntermediate hostAquatic animalFluoresceinsbiology.organism_classificationSea Bream030104 developmental biologyInfectious DiseaseschemistryLarvaBenzimidazolesParasitologyTrematodaDigeneaParasites & Vectors
researchProduct

Assessing the biological activity of the glucan phosphatase laforin

2016

Glucan phosphatases are a recently discovered family of enzymes that dephosphorylate either starch or glycogen and are essential for proper starch metabolism in plants and glycogen metabolism in humans. Mutations in the gene encoding the only human glucan phosphatase, laforin, result in the fatal, neurodegenerative, epilepsy known as Lafora disease. Here, we describe phosphatase assays to assess both generic laforin phosphatase activity and laforin's unique glycogen phosphatase activity.

0301 basic medicinePhosphataseLafora diseaseArticleSubstrate SpecificityNitrophenols03 medical and health scienceschemistry.chemical_compound0302 clinical medicineOrganophosphorus CompoundsDual-specificity phosphatasemedicineHumansGlucanEnzyme Assayschemistry.chemical_classificationGlycogenbiologyfood and beveragesBiological activitymedicine.diseaseFluoresceinsProtein Tyrosine Phosphatases Non-Receptor030104 developmental biologyEnzymechemistryBiochemistryLafora Diseasebiology.proteinLaforin030217 neurology & neurosurgeryGlycogen
researchProduct

Hidden complexity in membrane permeabilization behavior of antimicrobial polycations.

2021

A promising alternative to classical antibiotics are antimicrobial peptides and their synthetic mimics (smAMPs) that supposedly act directly on membranes. For a more successful design of smAMPs, we need to know how the type of interaction with the membrane determines the type of membrane perturbation. How this, in turn, transfers into selectivity and microbial killing activity is largely unknown. Here, we characterize the action of two smAMPs: MM:CO (a copolymer of hydrophobic cyclooctyl subunits and charged β-monomethyl-α-aminomethyl subunits) and the highly charged poly-NM (a homopolymer of α-aminomethyl subunits). By thorough characterization of vesicle leakage experiments, we elucidate …

0303 health sciencesMembrane permeabilizationChemistryVesicleKineticsAntimicrobial peptidesStatic ElectricityGeneral Physics and Astronomy010402 general chemistryAntimicrobialFluoresceins01 natural sciencesPermeability0104 chemical sciences03 medical and health sciencesMembraneGlycerophosphatesBiophysicsPhysical and Theoretical ChemistryHydrophobic and Hydrophilic InteractionsUnilamellar Liposomes030304 developmental biologyLeakage (electronics)Antimicrobial Cationic PeptidesProtein BindingPhysical chemistry chemical physics : PCCP
researchProduct

Spontaneous domain formation of phospholipase A2 at interfaces: fluorescence microscopy of the interaction of phospholipase A2 with mixed monolayers …

1992

Abstract Fluorescence microscopy has recently been proven to be an ideal tool to investigated the specific interaction of phospholipase A 2 with oriented substrate monolayers. Using a dual labeling technique, it could be shown that phospholipase A 2 can specifically attack and hydrolyze solid analogous l -α-DPPC domains. After a critical extent of monolayer hydrolysis the enzyme itself starts to aggregate forming regular shaped protein domains (Grainger et al. (1990) Biochim. Biophys. Acta 1023. 365–379). In order to confirm that the existence of hydrolysis products in the mononlayer is necessary for the observed aggregation of phospholipase A 2 , mixed monolayers of d - and l -α-DPPC, l -α…

12-DipalmitoylphosphatidylcholineCarboxylic acidProtein domainBiophysicsPhospholipidBiochemistryPhospholipases Achemistry.chemical_compoundPhospholipase A2MonolayerOrganic chemistryColoring Agentschemistry.chemical_classificationElapid VenomsPhospholipase AbiologyRhodaminesHydrolysisFatty AcidsSubstrate (chemistry)LysophosphatidylcholinesCell BiologyFluoresceinsEnzyme bindingPhospholipases A2chemistryMicroscopy Fluorescencebiology.proteinBiophysicsPhosphatidylcholinesFluoresceinDecanoic AcidsBiochimica et biophysica acta
researchProduct

Nitensidine A, a guanidine alkaloid from Pterogyne nitens, is a novel substrate for human ABC transporter ABCB1.

2014

The Pterogyne nitens (Fabaceae) tree, native to South America, has been found to produce guanidine alkaloids as well as bioactive flavonols such as kaempferol, quercetin, and rutin. In the present study, we examined the possibility of interaction between human ATP-binding cassette (ABC) transporter ABCB1 and four guanidine alkaloids isolated from P. nitens (i.e., galegine, nitensidine A, pterogynidine, and pterogynine) using human T cell lymphoblast-like leukemia cell line CCRF-CEM and its multi-drug resistant (MDR) counterpart CEM/ADR5000. In XTT assays, CEM/ADR5000 cells were resistant to the four guanidine alkaloids compared to CCRF-CEM cells, although the four guanidine alkaloids exhibi…

ATP Binding Cassette Transporter Subfamily BLeukemia T-CellStereochemistryATPasePharmaceutical ScienceATP-binding cassette transporterGuanidineschemistry.chemical_compoundStructure-Activity RelationshipCell Line TumorDrug DiscoveryHumansheterocyclic compoundsBinding siteGuanidineCytotoxicityP-glycoproteinPharmacologyAdenosine TriphosphatasesbiologyPlant ExtractsAlkaloidFabaceaeFluoresceinsAntineoplastic Agents PhytogenicDrug Resistance MultipleMolecular Docking SimulationComplementary and alternative medicinechemistryBiochemistryVerapamilDrug Resistance Neoplasmbiology.proteinMonoterpenesMolecular MedicineATP-Binding Cassette TransportersKaempferolPhytotherapyPhytomedicine : international journal of phytotherapy and phytopharmacology
researchProduct

Alkamides from Echinacea angustifolia Interact with P-Glycoprotein of Primary Brain Capillary Endothelial Cells Isolated from Porcine Brain Blood Ves…

2013

The blood-brain barrier prevents the passage of toxic compounds from blood circulation into brain tissue. Unfortunately, drugs for the treatment of neurodegenerative diseases, brain tumors, and other diseases also do not cross the blood-brain barrier. In the present investigation, we used isolated porcine brain capillary endothelial cells and a flow cytometric calcein-AM assay to analyze inhibition of P-glycoprotein, a major constituent of the blood-brain barrier. We tested 8 alkamides isolated from Echinacea angustifolia and found that four of them inhibited P-glycoprotein-mediated calcein transport in porcine brain capillary endothelial cells.

ATP Binding Cassette Transporter Subfamily BPolyunsaturated AlkamidesSwinePharmaceutical ScienceATP-binding cassette transporterCapillary endothelial cellsPharmacologyBlood–brain barrierEchinaceaAnalytical Chemistrychemistry.chemical_compoundDrug DiscoverymedicineAnimalsCells CulturedP-glycoproteinPharmacologyDose-Response Relationship DrugMolecular StructurebiologyEchinacea angustifoliaOrganic ChemistryBrainEndothelial CellsBiological TransportFlow CytometryFluoresceinsbiology.organism_classificationCalceinmedicine.anatomical_structureComplementary and alternative medicinechemistryBlood-Brain BarrierBlood circulationbiology.proteinMolecular MedicinePorcine brainPlanta Medica
researchProduct

Differential Regulatory Capacity of CD25+ T Regulatory Cells and Preactivated CD25+ T Regulatory Cells on Development, Functional Activation, and Pro…

2004

Abstract CD25+ T regulatory (Treg) cells play a central role regarding the maintenance of peripheral tolerance via suppression of autoaggressive CD4+ T cells, CD8+ T cells, and Th1 cells. In this study we demonstrate that CD25+ Treg cells can also suppress the differentiation of murine conventional CD4+ T cells toward Th2 cells in a contact-dependent manner. However, the cytokine production and proliferation of established Th2 cells could not be inhibited by freshly isolated CD25+ Treg cells, whereas a strong inhibition of differentiated Th2 cells by in vitro preactivated CD25+ Treg cells could be observed. Inhibition of both conventional CD4+ T cells and Th2 cells is accompanied by a stron…

CD4-Positive T-LymphocytesImmunologySuccinimideschemical and pharmacologic phenomenaLymphocyte ActivationMiceInterleukin 21Th2 CellsT-Lymphocyte SubsetsAnimalsImmunology and AllergyCytotoxic T cellIL-2 receptorAntigen-presenting cellInterleukin 3Mice Inbred BALB CCD40biologyPeripheral toleranceForkhead Transcription FactorsReceptors Interleukin-2hemic and immune systemsFluoresceinsCell biologyDNA-Binding ProteinsMice Inbred C57BLbiology.proteinInterleukin 12CytokinesThe Journal of Immunology
researchProduct

Differential interaction of the two cholesterol-dependent, membrane-damaging toxins, streptolysin O and Vibrio cholerae cytolysin, with enantiomeric …

2003

AbstractMembrane cholesterol is essential to the activity of at least two structurally unrelated families of bacterial pore-forming toxins, represented by streptolysin O (SLO) and Vibrio cholerae cytolysin (VCC), respectively. Here, we report that SLO and VCC differ sharply in their interaction with liposome membranes containing enantiomeric cholesterol (ent-cholesterol). VCC had very low activity with ent-cholesterol, which is in line with a stereospecific mode of interaction of this toxin with cholesterol. In contrast, SLO was only slightly less active with ent-cholesterol than with cholesterol, suggesting a rather limited degree of structural specificity in the toxin–cholesterol interact…

Cell Membrane Permeabilitygenetic structuresBiophysicsBiologymedicine.disease_causeBiochemistrySubstrate Specificity03 medical and health scienceschemistry.chemical_compoundBacterial ProteinsStructural Biologyotorhinolaryngologic diseasesGeneticsmedicineStreptolysin OMolecular BiologyVibrio cholerae030304 developmental biology0303 health sciencesLiposomeVibrio cholerae cytolysinCholesterolToxinCytotoxinsEnantiomeric cholesterol030302 biochemistry & molecular biologyMembranes ArtificialStereoisomerismCell BiologyFluoresceinseye diseasesRecombinant ProteinsCholesterol-binding cytolysinsMembraneCholesterolchemistryBiochemistryVibrio choleraeLiposomesStreptolysinsProtein–cholesterol interactionlipids (amino acids peptides and proteins)Streptolysinsense organsCytolysinEnantiomerProtein BindingFEBS letters
researchProduct