Search results for "Formal language"

showing 10 items of 357 documents

Automata and Quantum Computing

2015

Quantum computing is a new model of computation, based on quantum physics. Quantum computers can be exponentially faster than conventional computers for problems such as factoring. Besides full-scale quantum computers, more restricted models such as quantum versions of finite automata have been studied. In this paper, we survey various models of quantum finite automata and their properties. We also provide some open questions and new directions for researchers. Keywords: quantum finite automata, probabilistic finite automata, nondeterminism, bounded error, unbounded error, state complexity, decidability and undecidability, computational complexity

FOS: Computer and information sciencesQuantum PhysicsTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESFormal Languages and Automata Theory (cs.FL)FOS: Physical sciencesTheoryofComputation_GENERALComputer Science - Formal Languages and Automata TheoryComputational Complexity (cs.CC)68Q10 68Q12 68Q15 68Q19 68Q45Computer Science - Computational ComplexityTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESComputerSystemsOrganization_MISCELLANEOUSQuantum Physics (quant-ph)Computer Science::Formal Languages and Automata Theory
researchProduct

Quantum Computation With Devices Whose Contents Are Never Read

2010

In classical computation, a "write-only memory" (WOM) is little more than an oxymoron, and the addition of WOM to a (deterministic or probabilistic) classical computer brings no advantage. We prove that quantum computers that are augmented with WOM can solve problems that neither a classical computer with WOM nor a quantum computer without WOM can solve, when all other resource bounds are equal. We focus on realtime quantum finite automata, and examine the increase in their power effected by the addition of WOMs with different access modes and capacities. Some problems that are unsolvable by two-way probabilistic Turing machines using sublogarithmic amounts of read/write memory are shown to…

FOS: Computer and information sciencesQuantum sortQuantum PhysicsTheoretical computer scienceQuantum Turing machineComputer scienceFormal Languages and Automata Theory (cs.FL)ComputationQuantum simulatorFOS: Physical sciencesComputer Science - Formal Languages and Automata TheoryComputational Complexity (cs.CC)Computer Science - Computational ComplexityQuantum algorithmQuantum informationComputational problemQuantum Physics (quant-ph)Quantum computer
researchProduct

Open and Closed Prefixes of Sturmian Words

2013

A word is closed if it contains a proper factor that occurs both as a prefix and as a suffix but does not have internal occurrences, otherwise it is open. We deal with the sequence of open and closed prefixes of Sturmian words and prove that this sequence characterizes every finite or infinite Sturmian word up to isomorphisms of the alphabet. We then characterize the combinatorial structure of the sequence of open and closed prefixes of standard Sturmian words. We prove that every standard Sturmian word, after swapping its first letter, can be written as an infinite product of squares of reversed standard words.

FOS: Computer and information sciencesSequenceFibonacci numberDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Sturmian wordStructure (category theory)Sturmian wordInfinite productComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Computer Science - Formal Languages and Automata Theory68R15CombinatoricsPrefixComputer Science::Discrete MathematicsCombinatorics on words Sturmian wordFOS: MathematicsMathematics - CombinatoricsClosed wordsCombinatorics (math.CO)SuffixWord (group theory)Computer Science::Formal Languages and Automata TheoryMathematicsComputer Science - Discrete Mathematics
researchProduct

Minimal forbidden factors of circular words

2017

Minimal forbidden factors are a useful tool for investigating properties of words and languages. Two factorial languages are distinct if and only if they have different (antifactorial) sets of minimal forbidden factors. There exist algorithms for computing the minimal forbidden factors of a word, as well as of a regular factorial language. Conversely, Crochemore et al. [IPL, 1998] gave an algorithm that, given the trie recognizing a finite antifactorial language $M$, computes a DFA recognizing the language whose set of minimal forbidden factors is $M$. In the same paper, they showed that the obtained DFA is minimal if the input trie recognizes the minimal forbidden factors of a single word.…

FOS: Computer and information sciencesSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniGeneral Computer ScienceDiscrete Mathematics (cs.DM)Finite automatonSettore INF/01 - InformaticaFormal Languages and Automata Theory (cs.FL)Factor automatonComputer Science - Formal Languages and Automata TheoryComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Circular wordFibonacci wordMinimal forbidden factorTheoretical Computer ScienceComputer Science::Formal Languages and Automata TheoryComputer Science - Discrete Mathematics
researchProduct

String attractors and combinatorics on words

2019

The notion of \emph{string attractor} has recently been introduced in [Prezza, 2017] and studied in [Kempa and Prezza, 2018] to provide a unifying framework for known dictionary-based compressors. A string attractor for a word $w=w[1]w[2]\cdots w[n]$ is a subset $\Gamma$ of the positions $\{1,\ldots,n\}$, such that all distinct factors of $w$ have an occurrence crossing at least one of the elements of $\Gamma$. While finding the smallest string attractor for a word is a NP-complete problem, it has been proved in [Kempa and Prezza, 2018] that dictionary compressors can be interpreted as algorithms approximating the smallest string attractor for a given word. In this paper we explore the noti…

FOS: Computer and information sciencesSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniSettore INF/01 - InformaticaFormal Languages and Automata Theory (cs.FL)De Brujin wordComputer Science - Formal Languages and Automata TheoryBurrows-Wheeler transformString attractorComputer Science - Data Structures and AlgorithmsThue-Morse wordLempel-Ziv encodingBurrows-Wheeler transform; De Brujin word; Lempel-Ziv encoding; Run-length encoding; String attractor; Thue-Morse wordData Structures and Algorithms (cs.DS)Run-length encoding
researchProduct

Exact affine counter automata

2017

We introduce an affine generalization of counter automata, and analyze their ability as well as affine finite automata. Our contributions are as follows. We show that there is a language that can be recognized by exact realtime affine counter automata but by neither 1-way deterministic pushdown automata nor realtime deterministic k-counter automata. We also show that a certain promise problem, which is conjectured not to be solved by two-way quantum finite automata in polynomial time, can be solved by Las Vegas affine finite automata. Lastly, we show that how a counter helps for affine finite automata by showing that the language MANYTWINS, which is conjectured not to be recognized by affin…

FOS: Computer and information sciencesTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESautomataFormal Languages and Automata Theory (cs.FL)GeneralizationComputer scienceFOS: Physical sciencesComputer Science - Formal Languages and Automata Theorycounter automataМатематика0102 computer and information sciences02 engineering and technologyComputational Complexity (cs.CC)01 natural sciencesquantum computinglcsh:QA75.5-76.95Deterministic pushdown automatonComputer Science (miscellaneous)0202 electrical engineering electronic engineering information engineeringQuantum finite automataPromise problemTime complexityDiscrete mathematicsQuantum Physicscomputational complexityFinite-state machinelcsh:MathematicsИнформатикаpushdown automatalcsh:QA1-939Nonlinear Sciences::Cellular Automata and Lattice GasesКибернетикаAutomatonComputer Science - Computational ComplexityTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES010201 computation theory & mathematics020201 artificial intelligence & image processinglcsh:Electronic computers. Computer scienceAffine transformationaffine computingQuantum Physics (quant-ph)Computer Science::Formal Languages and Automata Theory
researchProduct

Finite automata with advice tapes

2013

We define a model of advised computation by finite automata where the advice is provided on a separate tape. We consider several variants of the model where the advice is deterministic or randomized, the input tape head is allowed real-time, one-way, or two-way access, and the automaton is classical or quantum. We prove several separation results among these variants, demonstrate an infinite hierarchy of language classes recognized by automata with increasing advice lengths, and establish the relationships between this and the previously studied ways of providing advice to finite automata.

FOS: Computer and information sciencesTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESFormal Languages and Automata Theory (cs.FL)Computer Science - Formal Languages and Automata TheoryNonlinear Sciences::Cellular Automata and Lattice GasesComputer Science::Formal Languages and Automata Theory
researchProduct

The infinite dihedral group

2022

We describe the infinite dihedral group as automaton group. We collect basic results and give full proofs in details for all statements.

FOS: Mathematics20F65 (Primary) 05C25 20E08 68Q70 13F25 (Secondary)Computer Science::Symbolic ComputationGroup Theory (math.GR)Nonlinear Sciences::Cellular Automata and Lattice GasesMathematics - Group TheoryComputer Science::Formal Languages and Automata Theory
researchProduct

Languages with mismatches and an application to approximate indexing

2005

In this paper we describe a factorial language, denoted by L(S, k,r), that contains all words that occur in a string 5 up to k mismatches every r symbols. Then we give some combinatorial properties of a parameter, called repetition index and denoted by R(S,k,r), defined as the smallest integer h ? 1 such that all strings of this length occur at most in a unique position of the text S up to k mismatches every r symbols. We prove that R(S, k, r) is a non-increasing function of r and a non-decreasing function of k and that the equation r = R(S, k, r) admits a unique solution. The repetition index plays an important role in the construction of an indexing data structure based on a trie that rep…

FactorialCombinatorics on wordsString (computer science)Function (mathematics)formal languagesmatching indexingCombinatoricsCombinatorics on wordsIntegerapproximate stringPosition (vector)TrieAlgorithmWord (group theory)Mathematics
researchProduct

Ambiguity and complementation in recognizable two-dimensional languages

2008

The theory of one-dimensional (word) languages is well founded and investigated since fifties. From several years, the increasing interest for pattern recognition and image processing motivated the research on two-dimensional or picture languages, and nowadays this is a research field of great interest. A first attempt to formalize the concept of finite state recognizability for two-dimensional languages can be attributed to Blum and Hewitt ([7]) who started in 1967 the study of finite state devices that can define two-dimensional languages, with the aim to finding a counterpart of what regular languages are in one dimension. Since then, many approaches have been presented in the literature…

Finite-state machineTessellationCOMPLEXITYSettore INF/01 - Informaticamedia_common.quotation_subjectPicture LanguageAmbiguityPattern RecognitionPicture languageAlgebraRule-based machine translationRegular languageFormal LanguagePICTURE-LANGUAGES; NONDETERMINISM; COMPLEXITY; AUTOMATAFormal languageRegular expressionAUTOMATAArithmeticPICTURE-LANGUAGESmedia_commonMathematicsNONDETERMINISM
researchProduct