Search results for "Formal languages"
showing 10 items of 322 documents
Balance Properties and Distribution of Squares in Circular Words
2008
We study balance properties of circular words over alphabets of size greater than two. We give some new characterizations of balanced words connected to the Kawasaki-Ising model and to the notion of derivative of a word. Moreover we consider two different generalizations of the notion of balance, and we find some relations between them. Some of our results can be generalised to non periodic infinite words as well.
Hamming, Permutations and Automata
2007
Quantum finite automata with mixed states are proved to be super-exponentially more concise rather than quantum finite automata with pure states. It was proved earlier by A.Ambainis and R.Freivalds that quantum finite automata with pure states can have exponentially smaller number of states than deterministic finite automata recognizing the same language. There was a never published "folk theorem" proving that quantum finite automata with mixed states are no more than superexponentially more concise than deterministic finite automata. It was not known whether the super-exponential advantage of quantum automata is really achievable. We prove that there is an infinite sequence of distinct int…
Super-Exponential Size Advantage of Quantum Finite Automata with Mixed States
2008
Quantum finite automata with mixed states are proved to be super-exponentially more concise rather than quantum finite automata with pure states. It was proved earlier by A.Ambainis and R.Freivalds that quantum finite automata with pure states can have exponentially smaller number of states than deterministic finite automata recognizing the same language. There was a never published "folk theorem" proving that quantum finite automata with mixed states are no more than super-exponentially more concise than deterministic finite automata. It was not known whether the super-exponential advantage of quantum automata is really achievable. We use a novel proof technique based on Kolmogorov complex…
Coding Partitions: Regularity, Maximality and Global Ambiguity
2007
The canonical coding partition of a set of words is the finest partition such that the words contained in at least two factorizations of a same sequence belong to a same class. In the case the set is not uniquely decipherable, it partitions the set into one unambiguous class and other parts that localize the ambiguities in the factorizations of finite sequences. We firstly prove that the canonical coding partition of a regular set contains a finite number of regular classes. We give an algorithm for computing this partition. We then investigate maximality conditions in a coding partition and we prove, in the regular case, the equivalence between two different notions of maximality. As an ap…
Symbolic Dynamics of Geodesic Flows on Trees
2019
In this chapter, we give a coding of the discrete-time geodesic ow on the nonwandering sets of quotients of locally finite simplicial trees X without terminal vertices by nonelementary discrete subgroups of Aut(X) by a subshift of finite type on a countable alphabet.
On bijections vs. unary functions
1996
A set of finite structures is in Binary NP if it can be characterized by existential second order formulas in which second order quantification is over relations of arity 2. In [DLS95] subclasses of Binary NP were considered, in which the second order quantifiers range only over certain classes of relations. It was shown that many of these subclasses coincide and that all of them can be ordered in a three-level linear hierarchy, the levels of which are represented by bijections, successor relations and unary functions respectively.
Tally languages accepted by alternating multitape finite automata
1997
We consider k-tape 1-way alternating finite automata (k-tape lafa). We say that an alternating automaton accepts a language L\(\subseteq\)(Σ*)k with f(n)-bounded maximal (respectively, minimal) leaf-size if arbitrary (respectively, at least one) accepting tree for any (w1, w2,..., wk) ∈ L has no more than $$f\mathop {(\max }\limits_{1 \leqslant i \leqslant k} \left| {w_i } \right|)$$ leaves. The main results of the paper are the following. If k-tape lafa accepts language L over one-letter alphabet with o(log n)-bounded maximal leaf-size or o(log log n)-bounded minimal leaf-size then the language L is semilinear. Moreover, if a language L is accepted with o(log log(n))-bounded minimal (respe…
K4-free Graphs as a Free Algebra
2017
International audience; Graphs of treewidth at most two are the ones excluding the clique with four vertices (K4) as a minor, or equivalently, the graphs whose biconnected components are series-parallel. We turn those graphs into a finitely presented free algebra, answering positively a question by Courcelle and Engelfriet, in the case of treewidth two. First we propose a syntax for denoting these graphs: in addition to parallel composition and series composition, it suffices to consider the neutral elements of those operations and a unary transpose operation. Then we give a finite equational presentation and we prove it complete: two terms from the syntax are congruent if and only if they …
Equivalence closure in the two-variable guarded fragment
2015
We consider the satisfiability and finite satisfiability problems for the extension of the two-variable guarded fragment in which an equivalence closure operator can be applied to two distinguished binary predicates. We show that the satisfiability and finite satisfiability problems for this logic are 2-ExpTime-complete. This contrasts with an earlier result that the corresponding problems for the full two-variable logic with equivalence closures of two binary predicates are 2-NExpTime-complete.
Learning by the Process of Elimination
2002
AbstractElimination of potential hypotheses is a fundamental component of many learning processes. In order to understand the nature of elimination, herein we study the following model of learning recursive functions from examples. On any target function, the learning machine has to eliminate all, save one, possible hypotheses such that the missing one correctly describes the target function. It turns out that this type of learning by the process of elimination (elm-learning, for short) can be stronger, weaker or of the same power as usual Gold style learning.While for usual learning any r.e. class of recursive functions can be learned in all of its numberings, this is no longer true for el…