Search results for "Formins"

showing 6 items of 6 documents

Evolutionary conserved role of eukaryotic translation factor eIF5A in the regulation of actin-nucleating formins

2017

AbstractElongation factor eIF5A is required for the translation of consecutive prolines, and was shown in yeast to translate polyproline-containing Bni1, an actin-nucleating formin required for polarized growth during mating. Here we show that Drosophila eIF5A can functionally replace yeast eIF5A and is required for actin-rich cable assembly during embryonic dorsal closure (DC). Furthermore, Diaphanous, the formin involved in actin dynamics during DC, is regulated by and mediates eIF5A effects. Finally, eIF5A controls cell migration and regulates Diaphanous levels also in mammalian cells. Our results uncover an evolutionary conserved role of eIF5A regulating cytoskeleton-dependent processes…

0301 basic medicineFluorescent Antibody Techniquelcsh:Medicinemacromolecular substancesBiologyArticleMiceEukaryotic cells03 medical and health sciencesEukaryotic translationCell MovementPeptide Initiation FactorsCitosqueletProtein biosynthesisAnimalsProtein Interaction Domains and Motifslcsh:ScienceCytoskeletonActinMultidisciplinaryCèl·lules eucariotesMicrofilament Proteinsfungilcsh:RGene Expression Regulation DevelopmentalRNA-Binding ProteinsTranslation (biology)Biological EvolutionActinsDorsal closureCell biologyElongation factor030104 developmental biologyProtein BiosynthesisForminsMutationbiology.proteinDrosophilalcsh:QEIF5AScientific Reports
researchProduct

Formin 2 links neuropsychiatric phenotypes at young age to an increased risk for dementia

2017

Age-associated memory decline is due to variable combinations of genetic and environmental risk factors. How these risk factors interact to drive disease onset is currently unknown. Here we begin to elucidate the mechanisms by which post-traumatic stress disorder (PTSD) at a young age contributes to an increased risk to develop dementia at old age. We show that the actin nucleator Formin 2 (Fmn2) is deregulated in PTSD and in Alzheimer's disease (AD) patients. Young mice lacking the Fmn2 gene exhibit PTSD-like phenotypes and corresponding impairments of synaptic plasticity, while the consolidation of new memories is unaffected. However, Fmn2 mutant mice develop accelerated age-associated me…

0301 basic medicineMalememoriaAginggenetics [Stress Disorders Post-Traumatic]Diseasegenetics [Neuronal Plasticity]BioinformaticsdemenciaStress Disorders Post-TraumaticMice0302 clinical medicineRisk FactorsNews & ViewsAge of OnsetMice KnockoutNeuronal PlasticitybiologyGeneral NeuroscienceMicrofilament ProteinsNuclear Proteinsgenetics [Nuclear Proteins]FearadultoMiddle AgedAlzheimer's diseasephysiology [Aging]Phenotype3. Good healthPhenotypemiedoFormin 2Forminsgenetics [Aging]estres postraumaticoepidemiology [Stress Disorders Post-Traumatic]AdultHDAC inhibidorpsychology [Dementia]alzheimerForminsNerve Tissue Proteinsepidemiology [Dementia]Affect (psychology)General Biochemistry Genetics and Molecular Biology03 medical and health sciencesHDAC inhibitorMemorygenetics [Dementia]ddc:570medicineDementiaAnimalsHumansenvejecimientoMolecular Biologyphysiology [Memory]General Immunology and MicrobiologyPost-traumatic stress disordermedicine.diseaseYoung age030104 developmental biologyformin 2 protein mouseCase-Control StudiesSynaptic plasticitybiology.proteinDementiagenetics [Microfilament Proteins]complications [Stress Disorders Post-Traumatic]030217 neurology & neurosurgeryHomeostasis
researchProduct

Fertility and Polarized Cell Growth Depends on eIF5A for Translation of Polyproline-Rich Formins in Saccharomyces cerevisiae

2014

eIF5A is an essential and evolutionary conserved translation elongation factor, which has recently been proposed to be required for the translation of proteins with consecutive prolines. The binding of eIF5A to ribosomes occurs upon its activation by hypusination, a modification that requires spermidine, an essential factor for mammalian fertility that also promotes yeast mating. We show that in response to pheromone, hypusinated eIF5A is required for shmoo formation, localization of polarisome components, induction of cell fusion proteins, and actin assembly in yeast. We also show that eIF5A is required for the translation of Bni1, a proline-rich formin involved in polarized growth during …

TranslationSaccharomyces cerevisiae ProteinsSaccharomyces cerevisiaePeptide Chain Elongation TranslationalForminsRNA-binding proteinSaccharomyces cerevisiaeInvestigationsPeptide Initiation FactorsMorphogenesisGeneticsQc-SNARE ProteinsPolyproline helixPolarisomeGeneticsMatingbiologyMicrofilament ProteinsMembrane ProteinsRNA-Binding ProteinsTranslation (biology)Polarized growthbiology.organism_classificationActinsProtein Structure TertiaryCell biologyCytoskeletal ProteinsMating of yeastForminsMutationbiology.proteinEIF5APeptidesRibosomesEIF5A
researchProduct

SIK2 orchestrates actin-dependent host response upon Salmonella infection

2021

Significance Through conducting quantitative proteomics upon Salmonella infection, we identified a SIK2 signaling network, implementing the kinase into a so far concealed biological function. Our data exposed SIK2 as a central orchestrator of an actin regulatory network, coordinating the stability of Salmonella-containing vacuole (SCV) and cellular actin assembly, in order to limit the acute phase of the infection. Most strikingly, SIK2 is not exclusively acting locally on actin assembly associated with the SCV but impacts the actin cytoskeleton architecture in its entirety upon Salmonella infection. Our work provides a mechanistic framework for how the actin cytoskeleton is regulated and h…

ProteomicsSalmonellaactin cytoskeletonImmunoblottingArp2/3 complexSalmonella infectionmacromolecular substancesProtein Serine-Threonine Kinasesmedicine.disease_causeBiochemistry03 medical and health sciencesMice0302 clinical medicineSalmonellamedicineXenophagyAnimalsHumansArp2/3 complexProtein Interaction MapsPhosphorylationActinCells Cultured030304 developmental biologyActin nucleation0303 health sciencesMultidisciplinarybiologyEpithelial CellsBiological Sciencesmedicine.diseaseActin cytoskeletonHCT116 CellsPhosphoproteinsActinsCell biologySalmonella-containing vacuoleHEK293 CellsFormins407Host-Pathogen Interactionsbiology.proteinRNA Interference030217 neurology & neurosurgeryhost–pathogen interactionsHeLa CellsSignal TransductionProceedings of the National Academy of Sciences of the United States of America
researchProduct

Profilin 1 delivery tunes cytoskeletal dynamics toward CNS axon regeneration

2020

After trauma, regeneration of adult CNS axons is abortive, causing devastating neurologic deficits. Despite progress in rehabilitative care, there is no effective treatment that stimulates axonal growth following injury. Using models with different regenerative capacities, followed by gain- and loss-of-function analysis, we identified profilin 1 (Pfn1) as a coordinator of actin and microtubules (MTs), powering axonal growth and regeneration. In growth cones, Pfn1 increased actin retrograde flow, MT growth speed, and invasion of filopodia by MTs, orchestrating cytoskeletal dynamics toward axonal growth. In vitro, active Pfn1 promoted MT growth in a formin-dependent manner, whereas localizati…

0301 basic medicineNervous systemGrowth ConesNeuromuscular Junctionmacromolecular substancesGlial scar03 medical and health sciencesMiceProfilins0302 clinical medicineTransduction GeneticmedicineAnimalsAxonGrowth coneCytoskeletonSpinal Cord InjuriesMice KnockoutbiologyRegeneration (biology)General MedicineGenetic TherapyDependovirusSciatic NerveCell biologyNerve Regeneration030104 developmental biologymedicine.anatomical_structurenervous system030220 oncology & carcinogenesisForminsbiology.proteinSciatic nerveFilopodiaResearch Article
researchProduct

Local vs global motions in protein folding

2013

It is of interest to know whether local fluctuations in a polypeptide chain play any role in the mechanism by which the chain folds to the native structure of a protein. This question is addressed by analyzing folding and non-folding trajectories of a protein; as an example, the analysis is applied to the 37-residue triple β-strand WW domain from the Formin binding protein 28 (FBP28) (PDB ID: 1E0L). Molecular dynamics (MD) trajectories were generated with the coarse-grained united-residue force field, and one- and two-dimensional free-energy landscapes (FELs) along the backbone virtual-bond angle θ and backbone virtual-bond-dihedral angle γ of each residue, and principal components, respect…

biologyChemistryBinding proteinProtein Data Bank (RCSB PDB)NanotechnologyForce field (chemistry)ArticleComputer Science ApplicationsWW domainMolecular dynamicsForminsPrincipal component analysisbiology.proteinProtein foldingPhysical and Theoretical ChemistryBiological system
researchProduct