Search results for "Fracture Toughne"

showing 10 items of 69 documents

The Transverse Crack Tension test revisited

2016

Several problems arise when measuring the mode II interlaminar fracture toughness using a Transverse Crack Tension specimen; in particular, the fracture toughness depends on the geometry of the specimen and cannot be considered a material parameter. A preliminary experimental campaign was conducted on TCTs of different sizes but no fracture toughness was measured because the TCTs failed in an unacceptable way, invalidating the tests. A comprehensive numerical and experimental investigation is conducted to identify the main causes of this behaviour and a modification of the geometry of the specimen is proposed. It is believed that the obtained results represent a significant contribution in …

EngineeringFracture toughne/dk/atira/pure/subjectarea/asjc/2200/2205Numerical analysiCeramics and Composite02 engineering and technologyExperimental methodSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineFracture toughness0203 mechanical engineeringUltimate tensile strength/dk/atira/pure/subjectarea/asjc/2500/2503Composite materialCivil and Structural EngineeringTensile testingbusiness.industryTension (physics)Experimental methodsFracture mechanicsStructural engineeringFracture toughness021001 nanoscience & nanotechnologyTransverse planeSettore ING-IND/22 - Scienza E Tecnologia Dei Materiali020303 mechanical engineering & transportsDelaminationCeramics and Composites0210 nano-technologybusinessNumerical analysisComposite Structures
researchProduct

An analysis of interface delamination mechanisms in orthotropic and hybrid fiber-metal composite laminates

2007

Abstract The onset and propagation of interlaminar defects is one of the main damage mechanisms in composite materials. This is even more the case when considering layered materials comprising metallic laminae (typically Aluminium) and FRP laminae. Propagation of delamination mainly depends on the initial crack extension and its loading mode. This work presents some results of a combined analytical–numerical–experimental study on the onset and propagation mechanisms regarding interlaminar defects. Two cases have been analysed in particular, the first consisting of a glass-fibre reinforced epoxy resin laminate, and the second consisting of a hybrid laminate where a lamina of aluminium is lay…

Fiber metal laminateMaterials scienceMechanical EngineeringDelaminationComposite materialsFracture toughnessDissimilar mixed mode bending specimenchemistry.chemical_elementFracture mechanicsEpoxyFibre-reinforced plasticComposite laminatesOrthotropic materialSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchinechemistryMechanics of MaterialsAluminiumvisual_artvisual_art.visual_art_mediumGeneral Materials ScienceComposite materialEngineering Fracture Mechanics
researchProduct

Dependence of fracture toughness of composite laminates on interface ply orientations and delamination growth direction

2004

A critical review has been performed of the published experimental research concerning delamination onset and growth in composite laminate interfaces of different lay-ups under single-mode loadings. It was found that, depending on the loading mode and interface lay-up, the traditional fracture toughness characterization by unidirectionally reinforced composite tests can lead to marked under- or overestimation of material resistance to crack growth. Empirical models of fracture toughness as a function of delamination front orientation with respect to reinforcement directions of the adjacent laminae have been validated and their applicability range established.

Fiber pull-outFracture toughnessMaterials scienceDelaminationComposite numberGeneral EngineeringCeramics and CompositesComposite materialComposite laminatesReinforcementExperimental researchComposites Science and Technology
researchProduct

Mechanical properties of basalt fiber reinforced composites manufactured with different vacuum assisted impregnation techniques

2016

Abstract This work describes an experimental mechanical characterisation campaign on composites made out of a quasi-unidirectional basalt fabric. In order to evaluate the ability of commercial basalt fabrics and their composites to meet the potentials of basalt fibers, the work has used raw materials from commercial catalogs with no further modification. Two common manufacturing techniques for medium performance composites have been adopted: vacuum assisted resin infusion, and hand-impregnated vacuum bagging. Two panels, one for each technique, have been fabricated, able to provide a sufficient number of samples for a comprehensive stiffness and strength characterization through Tensile, Fl…

Fracture toughneMaterials scienceVacuum assisted02 engineering and technologyRaw material010402 general chemistry01 natural sciencesIndustrial and Manufacturing EngineeringSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineFracture toughnessFlexural strengthUltimate tensile strengthmedicineComposite materialCuring (chemistry)Basalt fiberMechanical EngineeringMechanical testingStiffnessLay-up (manual/automated)021001 nanoscience & nanotechnology0104 chemical sciencesSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiMechanics of MaterialsBasalt fiberCeramics and Compositesmedicine.symptom0210 nano-technologyMechanical propertieComposites Part B: Engineering
researchProduct

Mechanism of brittle fracture in a ductile 316 alloy during stress corrosion

1990

Abstract The ductile f.c.c. 316 alloy is shown to exhibit brittle transgranular (and intergranular) stress corrosion cracking in a 153°C MgCl2 solution at free corrosion potential. Tests on smooth and pre-cracked specimens are performed to identify the mechanisms of fracture. Transgranular cracking is related to both a discontinuous microcleavage mainly on {100} planes and a microshearing on {111} planes. A new physical modelization is proposed to explain the brittle transgranular cracking. It is based on the influence of the localized anodic dissolution on the enhancement of the plasticity at the crack tip. The formation of dislocation pile-ups and the conditions of restricted slip induce …

Fracture toughnessBrittlenessMaterials scienceMetallurgyGeneral EngineeringFracture mechanicsIntergranular corrosionStress corrosion crackingPlasticityEnvironmental stress fractureCorrosionActa Metallurgica et Materialia
researchProduct

Correlation of epoxy material properties with the toughening effect of fullerene-like WS2 nanoparticles

2016

Abstract This work deals with the toughening effect of inorganic, fullerene-like WS2 (IF-WS2) nanoparticles (NPs) on epoxy. It has been hypothesized that this toughening effect depends on the epoxy’s cross-link density, its molecular defect fraction or its reference fracture toughness K Ic . Seven different epoxy systems were filled with 0.5% laboratory-made IF-WS2 NPs by mass and investigated in order to analyze which material properties are determining the toughening effect. These NPs were similar to commercially available IF-WS2 NPs, but their agglomerates could not be broken up as successfully and they yielded less toughening effect. The cross-link density of the epoxies measured via dy…

FullereneMaterials sciencePolymers and PlasticsOrganic ChemistryGeneral Physics and AstronomyNanoparticle02 engineering and technologyEpoxy010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesToughening0104 chemical sciencesFracture toughnessAgglomeratevisual_artMaterials Chemistryvisual_art.visual_art_mediumComposite material0210 nano-technologyMaterial propertiesThermal analysisEuropean Polymer Journal
researchProduct

Infrared Thermography assisted evaluation of static and fatigue Mode II fracture toughness in FRP composites

2019

Abstract The work proposes the combined use of a Modified Transverse Crack Tension (MTCT) test coupon and Infrared Thermography, to evaluate the static and fatigue behaviour of Fibre Reinforced Polymer composites under Mode II delamination. Artificial delaminations starters are added to the TCT coupon, whose effects on the Strain Energy Release Rate are discussed. Infrared Thermography and Thermoelastic Stress Analysis are implemented to investigate stresses and delaminations growths on two FRP materials: a pre-preg IM7/8552 carbon fibre-epoxy and a glass-fibre reinforced epoxy laminates. The thermographic, thermoelastic and second harmonic signals have been obtained and used to monitor the…

Materials science/dk/atira/pure/subjectarea/asjc/2200/220502 engineering and technologyPolymer Matrix CompositeStress (mechanics)Settore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineThermoelastic dampingFracture toughness0203 mechanical engineeringThermoelastic Stress Analysis/dk/atira/pure/subjectarea/asjc/2500/2503Composite materialFatigueDelamination Fracture ToughneMode IICivil and Structural EngineeringStrain energy release ratePolymer Matrix CompositesDelamination Fracture ToughnessDelaminationEpoxyFibre-reinforced plastic021001 nanoscience & nanotechnology020303 mechanical engineering & transportsvisual_artThermographyvisual_art.visual_art_mediumCeramics and Composites0210 nano-technology
researchProduct

Thermoelastic Stress Analysis of modified Transverse Cut Tensile composite specimens under pure Mode II fatigue delamination

2018

The present work investigates the behaviour of a Transvers Crack Tensile (TCT) specimen undergoing fatigue loading, by means of a Thermoelastic Stress Analysis (TSA) experimental setup. The TCT is a tensile composite specimen where a number of internal layers are cut through the beam width. The presence of such transverse notch favours the formation of interlaminar Mode II delaminations, starting from the notch tips and propagating between the cut and continuous plies. In this work, a modification is adopted to the classic TCT specimen, where insert films, mimicking artificial delaminations, are laid across the notch tips. This is done with the purpose to favour a pure Mode II and a symmetr…

Materials science/dk/atira/pure/subjectarea/asjc/2200/2205Composite number02 engineering and technologyEdge (geometry)Stress (mechanics)Settore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineThermoelastic damping0203 mechanical engineeringMaterials Science(all)Ultimate tensile strengthThermoelastic Stress AnalysisComposite materialFatigueEarth-Surface ProcessesDelamination Fracture ToughneMode IICivil and Structural EngineeringDelamination Fracture ToughnessMechanical EngineeringDelaminationFibre-reinforced plastic021001 nanoscience & nanotechnologyFibre Reinforced CompositeTransverse plane020303 mechanical engineering & transports/dk/atira/pure/subjectarea/asjc/2500Mechanics of MaterialsFibre Reinforced Composites/dk/atira/pure/subjectarea/asjc/2200/22100210 nano-technology/dk/atira/pure/subjectarea/asjc/2200/2211
researchProduct

Fracture toughness of synthesised high-performance epoxies subject to accelerated water aging

2018

Abstract The effects of water uptake on the fracture toughness of epoxy systems with high glass-transition temperatures (Tg above 170 °C) are investigated. Aging conditioning has been conducted in hot water, followed by a desorption conditioning in a room temperature dry-airborne. Water aging determines plasticisation effects and crosslink-density modifications, revealed by reductions of the Tg. It is less known how such modifications influence the material fracture toughness. In this study, Single Edge Notched Bending samples have been tested according to standards, to evaluate the KIC fracture toughness at different stages of water absorption-desorption. The characterisation has been supp…

Materials scienceAbsorption of waterFracture toughnePolymers and Plastics02 engineering and technology010402 general chemistry01 natural sciencesStress (mechanics)Crack closureFracture toughnessResidual stressmedicineEpoxy resinComposite materialSwellingOrganic ChemistryResidual stresseEpoxy021001 nanoscience & nanotechnologyWater aging0104 chemical sciencesPhotoelasticityvisual_artvisual_art.visual_art_mediumSwellingmedicine.symptom0210 nano-technologySaturation (chemistry)
researchProduct

Moisture Absorption Effects on the Resistance to Interlaminar Fracture of Woven Glass/Epoxy Composite Laminates

2012

The influence of moisture absorption on the interlaminar fracture behaviour of 8/8 harness satin weave glass/epoxy composite was investigated. Two series of specimens with 0°/0° and 90°/90° predominant interfaces immersed in water for different duration were tested under double cantilever beam (DCB mode I), single leg bending (SLB mode I + II) and end notched flexural (ENF mode II) loadings. In general, the apparent flexural modulus: E, and the fracture toughness: G C, decrease with increasing moisture content. This effect is more remarkable if mode II participation is bigger. The value of G C measured on 90°/90° specimens reveals higher than that on 0°/0° ones, but the variation in G C is …

Materials scienceAbsorption of waterFracture toughnessFlexural strengthFlexural modulusvisual_artComposite numbervisual_art.visual_art_mediumEpoxyBendingComposite materialComposite laminates
researchProduct