Search results for "Fracture Toughness"
showing 10 items of 67 documents
A three-dimensional cohesive-frictional grain-boundary micromechanical model for intergranular degradation and failure in polycrystalline materials
2013
Abstract In this study, a novel three-dimensional micro-mechanical crystal-level model for the analysis of intergranular degradation and failure in polycrystalline materials is presented. The polycrystalline microstructures are generated as Voronoi tessellations, that are able to retain the main statistical features of polycrystalline aggregates. The formulation is based on a grain-boundary integral representation of the elastic problem for the aggregate crystals, that are modeled as three-dimensional anisotropic elastic domains with random orientation in the three-dimensional space. The boundary integral representation involves only intergranular variables, namely interface displacement di…
Prediction of crack onset strain in composite laminates at mixed mode cracking
2009
Failure process of continuous fiber reinforced composite laminates in tension usually starts with appearance of intralaminar cracks. In composite laminates with complex lay-ups and/or under combined loading, intralaminar cracks may develop in plies with different reinforcement directions. A necessary part of mixed mode cracking models is the criterion of failure. For propagation-controlled fracture it is usually formulated in terms of energy release rates and their critical values of the particular composite material. Intralaminar fracture toughness of unidirectionally reinforced glass/epoxy composite was experimentally determined at several mode I and mode II ratios. It is found that the c…
Mesocrystalline calcium silicate hydrate: A bioinspired route toward elastic concrete materials
2017
Controlled aggregation of polymer-stabilized calcium silicate hydrate nanoparticles leads to elastic cementitious materials.
Effect of hydrothermal ageing on the thermal and delamination fracture behaviour of CFRP composites
2014
Abstract This work investigates the hydrothermal ageing behaviour of a carbon fibre reinforced laminate and its epoxy matrix in bulk conditions. A model DGEBA epoxy is employed, and water uptake and dynamic mechanical thermal (DMTA) analyses have been performed on both the composites and bulk resin. Fracture toughness of the bulk resin has been measured, evidencing a substantially unmodified critical stress intensity factor KIC, although the evidence of plasticisation effects given by DMTA. Interlaminar Mode I fracture toughness of the composite showed a variable trend towards slight decreases or slight increases, according to the prevailing toughening or embrittling mechanisms activated by…
<title>Micromechanical properties of AIN, TiN, and AIN/TiN nanostructured multilayer coatings</title>
2003
Coatings of AlN, TiN and nanostructured multilayer AlN/TiN have been deposited by reactive sputtering on sapphire, tungsten carbide (WC) and stainless steel substrates. The microhardness, adhesion and formation of cracks under indentation tests, were investigated. It was found that the adhesion of coatings on steel was higher, than on WC for all investigated samples. Nanostructured multilayer AlN/TiN films have the best adhesion and fracture toughness both on the hard (WC) and on the soft (stainless steel) substrates if compared with that for AlN and TiN "single layer" coatings. The effect of γ-radiation on mechanical properties of transparent AlN films was investigated. After the exposure …
Effects of Nylon 6,6 Nanofibrous Mats on Thermal Properties and Delamination Behavior of High Performance CFRP Laminates
2014
none 8 no Nylon 6,6 electrospun nanofibrous membranes interleaved in Carbon Fibre Reinforced Plastic (CFRP) laminates have been proposed as a means to provide a higher threshold value to delamination on structural sites where composites are more prone to develop such failure. A model, highly crosslinked thus inherently brittle, epoxy matrix was selected for its high Young’s modulus and glass transition temperature exceeding 250 °C. The influence of the Nylon 6,6 nanofibres on the curing behaviour of the matrix and on the thermal and dynamic mechanical properties of the cured resin was investigated. These properties were related to the features of the epoxy resin and of the resin impregnated…
A methodology for the rapid characterization of Mode II delamination fatigue threshold in FRP composites
2019
Abstract A new methodology to measure the Mode II interlaminar fracture in fatigue for FRP composites is developed. The proposed methodology uses a Modified Transvers Crack Tensile (MTCT) specimen and is able to characterize the near threshold behavior in a robust, easier and significantly faster way than standard procedures. Analytical formulae, able to link the crack growth rate to the load or strain amplitudes, were found and verified, and their importance was explained, in particular, for what concerns the characterisation of the near threshold behavior. Experiments were performed both in load and strain control, while the delamination growth was monitored using different techniques inc…
Fracture Toughness of Hydrothermally Aged Epoxy Systems with Different Crosslink Density
2015
Abstract The present work investigates the fracture toughness behaviour of Single Edge Notched Bending (SENB) samples of epoxy systems subject to water uptake aging. Two epoxy systems with a significantly different Glass Transition Temperature, T g , are in particular considered: a typical commercial non-aeronautical grade resin matrix for composite applications, reaching a T g of 90 °C, and a DGEBA+DDS epoxy system achieving a T g of 230 °C.The materials have been conditioned by hydrothermal aging in a thermal bath at the temperature of 50 °C. TransmissionPhotoelastic Stress Analysisis carried outon SENB samples during water aging, monitoring the presence and evolution of swelling stresses…
Analysis of the effect of a stress raiser on the strength of a UD flax/epoxy composite in off-axis tension
2014
The effect of stress raisers in the form of a slit-like notch and an open circular hole on the tensile strength of a quasi-UD flax-fiber-reinforced composite is studied experimentally. A finite fracture mechanics approach is applied to determine the intralaminar fracture toughness of the composite and to predict the strength in the presence of stress concentration. Reasonably good agreement of the notch effect predicted using finite fracture mechanics with a coupled strength and toughness fracture criterion and test results is demonstrated.
Investigation on fracture of epoxy-filled composites by acoustic emission
2016
Acoustic emission (AE) technique is widely used to monitor failure processes in composite materials includ-ing development of cracks and plastic deformations within the polymer matrix, fracture and debonding of inclusions, etc. In this study, the AE technique was applied investigating failure character of epoxy polymers with different content of nanofiller – fine polyethersulfone (PES) powder. Variation of material properties of the epoxy with 0, 5%, 7.5%, 10%, and 12.5% concentration (by weight) of the PES was assessed experimentally. Correlation between the PES content and the modulus of elasticity was found negligible. The same was characteristic for the tensile strength. Whereas, such a…