Search results for "Fuel Cell"
showing 10 items of 260 documents
Alkaline fuel cell technology - A review
2021
Abstract The realm of alkaline-based fuel cells has with the arrival of anionic exchange membrane fuel cells (AEMFCs) taken a great step to replace traditional liquid electrolyte alkaline fuel cells (AFCs). The following review summarises progress, bottleneck issues and highlights the most recent research trends within the field. The activity of alkaline catalyst materials has greatly advanced, however achieving long-term stability remains a challenge. Great AEMFC performances are reported, though these are generally obtained through the employment of platinum group metals (PGMs), thus emphasising the importance of R&D related to non-PGM materials. Thorough design strategies must be utilise…
Anodic Alumina Membranes for Fuel Cell Technology and Nanostructure Template -assisted Deposition
2009
Simulation analysis of fuel cell integration in a hybrid car
2019
Abstract Fuel cell is one of the green technologies that can help reduce toxic gas and decreasing effect of greenhouse gases in the world. This paper attempts to improve simulation model of fuel cell system that is easy to use and at the same time have an acceptable accuracy. The simulation model is developed through Matlab/Simulink software using Energetic Macroscopic Representation method which accuracy is compared with an established model. Simulation analysis of fuel cell integration is conducted by using experimental data from a real hybrid car. There are two potential types of system that were considered for the hybrid car in term of electricity generation and power produced to move t…
Fuel cell modelling for power supply systems design
2008
Today academic and industrial research is addressed on fuel cell based power supply to replace current lithium-ion and similar rechargeable battery systems. For system simulation, fuel cell models are developed. Even if power electronics designers demand for a blackbox model to limit the knowledge of physical and chemical parameters, high performance in terms of model accuracy and portability is absolutely necessary. A steady state and dynamic fuel cell model oriented to power supply systems design is proposed and, as an example, the implementation on PSIM software is presented. Simulation and experimental results are compared and the model portability is discussed. ©2008 IEEE.
A measurement setup for electric bicycles powered from renewable energy sources
2014
In this paper a measurement system for a pedalassist rickshaw is described. It has been designed and realized with the purpose of a deep analysis of operating time, range and general performance of the prototype vehicle. The three-wheel velocipede under test, developed in the SDES laboratory of the University of Palermo, is equipped with two battery packs, and a photovoltaic panel which is used to recharge one of the packs at a time. To further improve the autonomy of this mean, a fuel cell will be added as a power source, whose consequent improvement in performance could be easily investigated by the presented measurement setup. An Arduino board has been employed to receive and store all c…
Experimental characterization of a proton exchange membrane fuel-cell for hybrid electric pedal assisted cycles
2017
This paper presents a feasibility study on the prototyping of a hybrid EPAC (Electric Pedal Assisted Cycle) through an FC-B-UC (Fuel Cell — Battery — Ultra-Capacitors) power system. Aim of this work is the characterization of a PEMFC (Proton Exchange Membrane Fuel Cell) in order to confirm its theoretical performances and to verify the possibility of its installation on an e-bike.
Electrodes with Immobilized Particles and Droplets: Three-Phase Electrodes
2014
It is a common feature of electrodes with immobilized particles and droplets that three phases are in close contact with each other, i.e., each phase having an interface with the two other phases. This situation exists also in most of the so-called surface-modified or film electrodes, many battery and fuel cell electrodes, electrodes of the second kind, etc. In fact, the majority of surface-modified electrodes consist of arrays of particles that partially cover the electrode surface. It would be far beyond the scope of this book to include all chemical and electrochemical techniques to deposit films on electrodes. Here we shall deal only with electrodes where the particles or droplets have …
A steady state and dynamic fuel cell model including temperature effects
2009
In the last few years fuel cells have attracted much interest from both academic and industrial researchers to replace current lithium-ion and similar rechargeable battery systems. A wide variety of research areas benefit from fuel cell use: electro-chemical, stationary, transportation and portable electronics can be cited as an example. Potential applications range from few watts to megawatts systems. Even concerning quite different scientific areas, fuel cell modelling is a common requirement. The complexity of such a topic relies not only on the modelling approach but also in the model structure and implementation. In this paper a steady state and dynamic fuel cell circuital model includ…
Different scenarios of electric mobility: Current situation and possible future developments of fuel cell vehicles in Italy
2020
The diffusion of electric vehicles in Italy has started but some complications weight its spread. At present, hybrid technology is the most followed by users, due particularly to socioeconomic factors such as cost of investment and range anxiety. After a deep discussion of the Italian scenario, the aim of the paper is to recognize whether fuel cell technology may be an enabling solution to overcome pollution problems and respect for the environment. The opportunity to use fuel cells to store electric energy is quite fascinating&mdash
Monofunctional pyrenes at carbon nanotube electrodes for direct electron transfer H2O2 reduction with HRP and HRP-bacterial nanocellulose
2021
Abstract The non-covalent modification of carbon nanotube electrodes with pyrene derivatives is a versatile approach to enhance the electrical wiring of enzymes for biosensors and biofuel cells. We report here a comparative study of five pyrene derivatives adsorbed at multi-walled carbon nanotube electrodes to shed light on their ability to promote direct electron transfer with horseradish peroxidase (HRP) for H2O2 reduction. In all cases, pyrene-modified electrodes enhanced catalytic reduction compared to the unmodified electrodes. The pyrene N-hydroxysuccinimide (NHS) ester derivative provided access to the highest catalytic current of 1.4 mA cm−2 at 6 mmol L−1 H2O2, high onset potential …