Search results for "Fuel Cells"

showing 10 items of 83 documents

Analysis of Load Match in Nearly Zero Energy Buildings

2018

The concept of load matching refers to the degree of agreement or disagreement of the on-site generation with the building load profiles: it can be increased and optimised with modifications on both the energy demand and generation. In this context, the paper presents the load match analysis of a case study: a modular housing construction (it has an area of 45 m 2 and S/V ratio equal to 2.75 m −1 ) built in Messina (Italy). Moreover, in order to optimize the design of the next test module to be built, a parametric analysis was performed considering different scenarios on the generation side, to explore the effectiveness of the solutions sets used in current design and plan different solutio…

Settore ING-IND/11 - Fisica Tecnica AmbientaleZero-energy buildingCover (telecommunications)Degree (graph theory)Computer sciencebusiness.industryLoad Matching nearly Zero Energy Buildings Energy storage renewable energy use in buildings fuel cellsContext (language use)Atmospheric modelModular designBase (topology)Automotive engineeringEnergy storagebusiness2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI)
researchProduct

Heteropolyacids - Chitosan Membranes for H2/O2 Low Temperature Fuel Cells

2016

Proton exchange membrane fuel cells (PEMFCs) have received much attention in recent years because of their high power density, efficiency and zero-environmental pollution. As one of the key components in fuel cells, the proton exchange membrane is expected to have high proton conductivity and good electrochemical stability. In the attempt to promote PEMCFs commercialization, high cost of fuel cell systems and short lifecycle are the two main issues that need to be addressed, thus large research effort has been devoted in developing new polymer electrolytes that can replace the usually employed proton conductors, e.g. Nafion®, with other membranes of comparable performances but lower cost.A…

Settore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringChitosan membraneChemistryHeteropolyacids Chitosan Membranes H2/O2 Low Temperature Fuel CellsFuel cellsECS Transactions
researchProduct

Heteropolyacids - Chitosan Membranes for H2/O2 Low Temperature Fuel Cells

2016

Proton exchange membrane fuel cells (PEMFCs) have received much attention in recent years because of their high power density, efficiency and zero-environmental pollution. As one of the key components in fuel cells, the proton exchange membrane is expected to have high proton conductivity and good electrochemical stability. In the attempt to promote PEMCFs commercialization, high cost of fuel cell systems and short lifecycle are the two main issues that need to be addressed, thus large research effort has been devoted in developing new polymer electrolytes that can replace the usually employed proton conductors, e.g. Nafion®, with other membranes of comparable performances but lower cost. A…

Settore ING-IND/23 - Chimica Fisica ApplicataHeteropolyacids Chitosan Membranes H2/O2 Low Temperature Fuel Cells
researchProduct

Phosphomolybdic Acid and Mixed Phosphotungstic/Phosphomolybdic Acid Chitosan Membranes for H2/O2 Fuel Cells

2016

Proton exchange membrane fuel cells (PEMFCs) have received much attention in recent years because of their high power density, efficiency and zero-environmental pollution. As one of the key components in fuel cells, the proton exchange membrane is expected to have high proton conductivity and good electrochemical stability. In the attempt to promote PEMCFs commercialization, high cost of fuel cell systems and short lifecycle are the two main issues that need to be addressed, thus large research effort has been devoted in developing new polymer electrolytes that can replace the usually employed proton conductors, e.g. Nafion®, with other membranes of comparable performances but lower cost. A…

Settore ING-IND/23 - Chimica Fisica ApplicataPhosphomolybdic Acid Phosphotungstic/Phosphomolybdic Acid Chitosan Membranes H2/O2 Fuel Cells
researchProduct

Influence of heteropolyacid in enhancing proton conductivity of chitosan membranes for H2/O2 Fuel Cells

2016

To promote Proton Exchange Membrane Fuel Cells (PEMFCs) commercialization, large research effort has been devoted in developing new polymer electrolytes that can replace the usually employed proton conductors, e.g. Nafion®, with other membranes of comparable performances but lower cost. Chitosan (CS)-based membrane electrolyte is currently studied as alternative candidate for PEMFC application. Several works have shown that Heteropolyacids (HPAs) can be used to prepare Chitosan polyelectrolytes (PECs) to be employed as proton exchange membrane in low temperature fuel cell. In previous works [1-3] we have shown that CS/PTA membranes, prepared using alumina porous medium for the slow release …

Settore ING-IND/23 - Chimica Fisica Applicataheteropolyacid proton conductivity chitosan membranes H2/O2 Fuel Cells
researchProduct

Optimization of the performance of an air–cathode MFC by changing solid retention time

2017

BACKGROUND This work is focused on the optimization of the performances of air-cathode microbial fuel cells (MFC) by changing the solid retention time (SRT) of the suspended biomass culture. RESULTS Five MFCs inoculated with activated sludge obtained from a municipal wastewater treatment plant were fed with a highly-concentrated acetate solution (10 000 ppm COD) and operated over two-month tests in order to determine how SRT may influence the performances of the bio-electrogenic cells. The MFC operated at SRTs of 2.5 days was found to outperform the other cells, operated at SRT of 1.4, 5.0, 7.4 and 10.0 days. In order to evaluate the possibility of using SRT as a manipulated parameter for t…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicisolid retention time (SRT)acetate air-cathodeMicrobial fuel cellsSettore ING-IND/27 - Chimica Industriale E TecnologicaSludge agePilas de combustible microbianasmicrobial fuel cellSolid retention time (SRT)Acetate air-cathodeAcetato de aire-cátodoTiempo de retención de sólidos (SRT)human activitiessludge ageEdad del lodo
researchProduct

Triblock SEBS/DVB crosslinked and sulfonated membranes: Fuel cell performance and conductivity

2021

[EN] A set of styrene-ethylene-butylene-styrene triblock copolymer (SEBS) membranes with 10 or 25 wt.% divinyl-benzene (DVB) as a crosslinking agent were prepared and validated. Physicochemical characterization revealed suitable hydrolytic and thermal stability of photo-crosslinked membranes containing 25%wt. DVB and post-sulfonated. These compositions were evaluated in H2/O2 single cells, and electrical and proton conductivities were furtherly assessed. The membranes with the milder post-sulfonation showed greater proton conductivity than those with excessive sulfonation. In terms of electrical conductivity, a universal power law was applied, and the values obtained were low enough for bei…

Solucions polimèriquesMaterials scienceCrosslinkingMembranesPolymers and PlasticsCopolymers09.- Desarrollar infraestructuras resilientes promover la industrialización inclusiva y sostenible y fomentar la innovaciónGeneral ChemistryConductivityPolyelectrolytesPolyelectrolyteSurfaces Coatings and Films08.- Fomentar el crecimiento económico sostenido inclusivo y sostenible el empleo pleno y productivo y el trabajo decente para todos07.- Asegurar el acceso a energías asequibles fiables sostenibles y modernas para todosMembraneChemical engineeringMAQUINAS Y MOTORES TERMICOSDigital Video BroadcastingMaterials ChemistryCopolymerFuel cellsFuel cellsMaterials
researchProduct

Nanoporous Gold‐Based Materials for Electrochemical Energy Storage and Conversion

2021

SupercapacitorGeneral EnergyMaterials scienceChemical engineeringNanoporousFuel cellsWater splittingElectrochemical energy storageEnergy storageEnergy Technology
researchProduct

Performance of Sulfonated Poly(Vinyl Alcohol)/Graphene Oxide Polyelectrolytes for Direct Methanol Fuel Cells

2020

The use of nanotechnology along with the consideration of a functionalization and stabilization approach to poly(vinyl alcohol) (PVA) is considered useful for the preparation of cost-effective polyelectrolyte membranes. A set of nanocomposite and crosslinked membranes based on PVA/sulfosuccinic acid (SSA)/graphene oxide (GO) are prepared and analyzed as polyelectrolytes in direct methanol fuel cells (DMFCs). The crosslinking and sulfonation by the use of SSA enhances the stability and increase the proton-conducting sites in the PVA structure. The presence of GO augments the stability, remarkably decreases the methanol crossover, and enhances power density curves. An optimum value for proton…

Vinyl alcoholMaterials scienceGrapheneOxidePolyelectrolytelaw.inventionchemistry.chemical_compoundGeneral EnergyMembraneChemical engineeringchemistryTecnologialawFuel cellsEnergiaMethanol fuelEnergy Technology
researchProduct

X-ray Spectroscopy of (Ba,Sr,La)(Fe,Zn,Y)O3-δIdentifies Structural and Electronic Features Favoring Proton Uptake

2020

Mixed protonic–electronic conducting oxides are key functional materials for protonic ceramic fuel cells. Here, (Ba,Sr,La)(Fe,Zn,Y)O3−δ perovskites are comprehensively investigated by X-ray spectroscopy (in oxidized and reduced states). Extended X-ray absorption fine structure shows that Zn,Y doping strongly increases the tendency for Fe–O–Fe buckling. X-ray absorption near-edge spectroscopy at the Fe K-edge and X-ray Raman scattering at the O K edge demonstrate that both iron and oxygen states are involved when the samples are oxidized, and for the Zn,Y doped materials, the hole transfer from iron to oxygen is less pronounced. This can be correlated with the observation that these material…

X-ray spectroscopyMaterials scienceProtonGeneral Chemical Engineeringchemistry.chemical_element02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesOxygen0104 chemical sciencesExtended X ray absorption fine structure spectroscopy Functional materials Iron OxygenPerovskite Protonic ceramic fuel cells (PCFC) X ray absorptionCrystallographychemistryvisual_artMaterials Chemistryvisual_art.visual_art_mediumFuel cellsCeramicAbsorption (chemistry)0210 nano-technology
researchProduct