Search results for "Functional calculus"

showing 6 items of 16 documents

Integral holomorphic functions

2004

We define the class of integral holomorphic functions over Banach spaces; these are functions admitting an integral representation akin to the Cauchy integral formula, and are related to integral polynomials. After studying various properties of these functions, Banach and Frechet spaces of integral holomorphic functions are defined, and several aspects investigated: duality, Taylor series approximation, biduality and reflexivity. In this paper we define and study a class of holomorphic functions over infinite- dimensional Banach spaces admitting integral representation. Our purpose, and the motivation for our definition, are two-fold: we wish to obtain an integral repre- sentation formula …

Mathematics::Functional AnalysisPure mathematicsGeneral MathematicsHolomorphic functional calculusMathematical analysisHolomorphic functionAnalyticity of holomorphic functionsDaniell integralCauchy's integral theoremInfinite-dimensional holomorphyIdentity theoremCauchy's integral formulaMathematicsStudia Mathematica
researchProduct

HOLOMORPHIC SUPERPOSITION OPERATORS BETWEEN BANACH FUNCTION SPACES

2013

AbstractWe prove that for a large class of Banach function spaces continuity and holomorphy of superposition operators are equivalent and that bounded superposition operators are continuous. We also use techniques from infinite dimensional holomorphy to establish the boundedness of certain superposition operators. Finally, we apply our results to the study of superposition operators on weighted spaces of holomorphic functions and the$F(p, \alpha , \beta )$spaces of Zhao. Some independent properties on these spaces are also obtained.

Pure mathematicsApproximation propertyGeneral MathematicsHolomorphic functional calculusBanach manifoldFinite-rank operatorInfinite-dimensional holomorphyOperator theoryIdentity theoremLp spaceMathematicsJournal of the Australian Mathematical Society
researchProduct

Group-symmetric holomorphic functions on a Banach space

2016

We study the holomorphic functions on a complex Banach space E that are invariant under the action of a given group of operators on E. A great variety of situations occur depending, of course, on the group and the space. Nevertheless, in the examples we deal with, they can be described in terms of a few natural ones and functions of a finite number of variables. Fil: Aron, Richard. Universidad de Valencia; España Fil: Galindo, Pablo. Universidad de Valencia; España Fil: Pinasco, Damian. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Zalduendo, Ignacio Martin. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de I…

Pure mathematicsMatemáticasGeneral MathematicsSymmetric holomorphic functions010102 general mathematicsInfinite-dimensional vector functionHolomorphic functional calculusMathematical analysis//purl.org/becyt/ford/1.1 [https]Banach manifoldInfinite-dimensional holomorphyIdentity theorem01 natural sciencesMatemática Pura//purl.org/becyt/ford/1 [https]010101 applied mathematicsBergman spaceInterpolation spaceAnalyticity of holomorphic functions0101 mathematicsCIENCIAS NATURALES Y EXACTASMathematics
researchProduct

Holomorphic mappings of bounded type

1992

Abstract For a Banach space E, we prove that the Frechet space H b(E) is the strong dual of an (LB)-space, B b(E), which leads to a linearization of the holomorphic mappings of bounded type. It is also shown that the holomorphic functions defined on (DFC)-spaces are of uniformly bounded type.

Pure mathematicsMathematics::Complex VariablesApplied MathematicsHolomorphic functional calculusMathematical analysisHolomorphic functionBanach spaceType (model theory)Bounded typeLinearizationFréchet spaceUniform boundednessAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Isometric dilations and 𝐻^{∞} calculus for bounded analytic semigroups and Ritt operators

2017

We show that any bounded analytic semigroup on L p L^p (with 1 > p > ∞ 1>p>\infty ) whose negative generator admits a bounded H ∞ ( Σ θ ) H^{\infty }(\Sigma _\theta ) functional calculus for some θ ∈ ( 0 , π 2 ) \theta \in (0,\frac {\pi }{2}) can be dilated into a bounded analytic semigroup ( R t ) t ⩾ 0 (R_t)_{t\geqslant 0} on a bigger L p L^p -space in such a way that R t R_t is a positive contraction for any t ⩾ 0 t\geqslant 0 . We also establish a discrete analogue for Ritt operators and consider the case when L p L^p -spaces are replaced by more general Banach spaces. In connection with these functional calculus issues, we study isometric dilations of bounded continuous rep…

Pure mathematicsSemigroupApplied MathematicsGeneral Mathematics010102 general mathematicsAmenable groupBanach spacemedicine.disease01 natural sciencesGroup representationDilation (operator theory)Functional calculusBounded function0103 physical sciencesmedicine010307 mathematical physics0101 mathematicsCalculus (medicine)MathematicsTransactions of the American Mathematical Society
researchProduct

Locally convex quasi $C^*$-normed algebras

2012

Abstract If A 0 [ ‖ ⋅ ‖ 0 ] is a C ∗ -normed algebra and τ a locally convex topology on A 0 making its multiplication separately continuous, then A 0 ˜ [ τ ] (completion of A 0 [ τ ] ) is a locally convex quasi ∗-algebra over A 0 , but it is not necessarily a locally convex quasi ∗-algebra over the C ∗ -algebra A 0 ˜ [ ‖ ⋅ ‖ 0 ] (completion of A 0 [ ‖ ⋅ ‖ 0 ] ). In this article, stimulated by physical examples, we introduce the notion of a locally convex quasi C ∗ -normed algebra, aiming at the investigation of A 0 ˜ [ τ ] ; in particular, we study its structure, ∗-representation theory and functional calculus.

Strong commutatively quasi-positive elementNormed algebraPure mathematicsApplied MathematicsRegular locally convex topologyRegular polygonStructure (category theory)Mathematics - Operator AlgebrasFOS: Physical sciencesLocally convex quasi C∗-normed algebraMathematical Physics (math-ph)Representation theoryquasi *-algebras C*-normsFunctional calculusMathematics::LogicCommutatively quasi-positive elementSettore MAT/05 - Analisi MatematicaFOS: MathematicsMultiplicationAlgebra over a fieldElement (category theory)Operator Algebras (math.OA)AnalysisMathematical PhysicsMathematics
researchProduct