Search results for "Functor"

showing 10 items of 32 documents

Fibred-categorical obstruction theory

2022

Abstract We set up a fibred categorical theory of obstruction and classification of morphisms that specialises to the one of monoidal functors between categorical groups and also to the Schreier-Mac Lane theory of group extensions. Further applications are provided to crossed extensions and crossed bimodule butterflies, with in particular a classification of non-abelian extensions of unital associative algebras in terms of Hochschild cohomology.

Pure mathematicsFibrationCohomology Fibration Category of fractions Schreier-Mac Lane theorem Obstruction theory Crossed extension Hochschild cohomologyFibered knotMathematics::Algebraic TopologyCohomologyHochschild cohomologyMorphismMathematics::K-Theory and HomologyMathematics::Category TheoryCategorical variableMathematicsSchreier-Mac Lane theoremAlgebra and Number TheoryFunctorCategory of fractionsGroup (mathematics)Crossed extensionSettore MAT/01 - Logica MatematicaObstruction theoryCohomologyCategory of fractions; Cohomology; Crossed extension; Fibration; Hochschild cohomology; Obstruction theory; Schreier-Mac Lane theoremSettore MAT/02 - AlgebraBimoduleObstruction theory
researchProduct

A fuzzification of the category of M-valued L-topological spaces

2004

[EN] A fuzzy category is a certain superstructure over an ordinary category in which ”potential” objects and ”potential” morphisms could be such to a certain degree. The aim of this paper is to introduce a fuzzy category FTOP(L,M) extending the category TOP(L,M) of M-valued L- topological spaces which in its turn is an extension of the category TOP(L) of L-fuzzy topological spaces in Kubiak-Sostak’s sense. Basic properties of the fuzzy category FTOP(L,M) and its objects are studied.

Pure mathematicsFunctorHomotopy categoryDiagram (category theory)Mathematics::General Mathematicslcsh:Mathematicslcsh:QA299.6-433lcsh:Analysislcsh:QA1-939GL-monoid(LM)-fuzzy topologyPower-set operators(LM)-interior operatorMathematics::Category TheoryCategory of topological spacesBiproductUniversal propertyGeometry and TopologyM-valued L-topologyCategory of setsL-fuzzy category(LM)-neighborhood systemMathematicsInitial and terminal objectsApplied General Topology
researchProduct

On weighted inductive limits of spaces of Fréchet-valued continuous functions

1991

AbstractIn this article we continue the study of weighted inductive limits of spaces of Fréchet-valued continuous functions, concentrating on the problem of projective descriptions and the barrelledness of the corresponding “projective hull”. Our study is related to the work of Vogt on the study of pairs (E, F) of Fréchet spaces such that every continuous linear mapping from E into F is bounded and on the study of the functor Ext1 (E, F) for pairs (E, F) of Fréchet spaces.

Pure mathematicsFunctorHullBounded functionMathematical analysisGeneral MedicineProjective testContinuous linear operatorMathematicsJournal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics
researchProduct

Deformations of Calabi-Yau manifolds in Fano toric varieties

2020

In this article, we investigate deformations of a Calabi-Yau manifold $Z$ in a toric variety $F$, possibly not smooth. In particular, we prove that the forgetful morphism from the Hilbert functor $H^F_Z$ of infinitesimal deformations of $Z$ in $F$ to the functor of infinitesimal deformations of $Z$ is smooth. This implies the smoothness of $H^F_Z $ at the corresponding point in the Hilbert scheme. Moreover, we give some examples and include some computations on the Hodge numbers of Calabi-Yau manifolds in Fano toric varieties.

Pure mathematicsGeneral MathematicsInfinitesimalFano plane01 natural sciencesMathematics - Algebraic GeometryMorphismMathematics::Algebraic GeometryMathematics::Category TheoryFOS: MathematicsCalabi–Yau manifold0101 mathematicsMathematics::Symplectic GeometryAlgebraic Geometry (math.AG)ComputingMethodologies_COMPUTERGRAPHICSMathematicsFunctorComputer Science::Information Retrieval010102 general mathematicsToric varietyFano toric varieties · Calabi-Yau manifolds · Deformations of subvarietiesManifold010101 applied mathematicsHilbert scheme14J32 14J45 32G10Settore MAT/03 - GeometriaMathematics::Differential Geometry
researchProduct

Nori’s Diagram Category

2017

We explain Nori’s construction of an abelian category attached to the representation of a diagram and establish some properties for it. The construction is completely formal. It mimics the standard construction of the Tannakian dual of a rigid tensor category with a fibre functor . Only, we do not have a tensor product or even a category but only what we should think of as the fibre functor.

Pure mathematicsMathematics::Algebraic GeometryFunctorTensor productMathematics::K-Theory and HomologyMathematics::Category TheoryTensor (intrinsic definition)DiagramAbelian categoryRepresentation (mathematics)Dual (category theory)Mathematics
researchProduct

Polynomial functors and polynomial monads

2009

We study polynomial functors over locally cartesian closed categories. After setting up the basic theory, we show how polynomial functors assemble into a double category, in fact a framed bicategory. We show that the free monad on a polynomial endofunctor is polynomial. The relationship with operads and other related notions is explored.

Pure mathematicsPolynomialFunctorGeneral MathematicsMathematics - Category Theory18C15 18D05 18D50 03G30517 - AnàlisiMonad (functional programming)BicategoryMathematics::Algebraic TopologyCartesian closed categoryMathematics::K-Theory and HomologyMathematics::Category TheoryPolynomial functor polynomial monad locally cartesian closed categories W-types operadsFOS: MathematicsPolinomisCategory Theory (math.CT)Mathematics
researchProduct

Functorial Test Modules

2016

In this article we introduce a slight modification of the definition of test modules which is an additive functor $\tau$ on the category of coherent Cartier modules. We show that in many situations this modification agrees with the usual definition of test modules. Furthermore, we show that for a smooth morphism $f \colon X \to Y$ of $F$-finite schemes one has a natural isomorphism $f^! \circ \tau \cong \tau \circ f^!$. If $f$ is quasi-finite and of finite type we construct a natural transformation $\tau \circ f_* \to f_* \circ \tau$.

Pure mathematicsSmooth morphismAlgebra and Number TheoryFunctor13A35 (Primary) 14F10 14B05 (Secondary)010102 general mathematicsType (model theory)Mathematics - Commutative AlgebraCommutative Algebra (math.AC)01 natural sciencesMathematics - Algebraic GeometryTransformation (function)0103 physical sciencesNatural transformationFOS: Mathematics010307 mathematical physics0101 mathematicsAlgebraic Geometry (math.AG)Mathematics
researchProduct

On some aspects of Borel-Moore homology in motivic homotopy : weight and Quillen’s G-theory

2016

The theme of this thesis is different aspects of Borel-Moore theory in the world of motives. Classically, over the field of complex numbers, Borel-Moore homology, also called “homology with compact support”, has some properties quite different from singular homology. In this thesis we study some generalizations and applications of this theory in triangulated categories of motives.The thesis is composed of two parts. In the first part we define Borel-Moore motivic homology in the triangulated categories of mixed motives defined by Cisinski and Déglise and study its various functorial properties, especially a functoriality similar to the refined Gysin morphism defined by Fulton. These results…

Quillen’s K-theory and G-theoryStructure de poidsMixed motives[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Motivic homotopy theoryHomologie de Borel-MooreThéorie de l’homotopie motiviqueMotifs de ChowChow motives[MATH.MATH-KT] Mathematics [math]/K-Theory and Homology [math.KT]G-théorieFormalisme des six foncteursWeight structureSix functors formalismMotifs mixtesRefined Gysin morphismBorel-Moore homologyMorphisme de Gysin raffinéK-théorie de Quillen
researchProduct

On Pseudofunctors Sending Groups to 2-Groups

2023

For a category B with finite products, we first characterize pseudofunctors from B to Cat whose corresponding opfibration is cartesian monoidal. Among those, we then characterize the ones which extend to pseudofunctors from internal groups to 2-groups. If B is additive, this is the case precisely when the corresponding opfibration has groupoidal fibres.

Settore MAT/02 - AlgebraGeneral MathematicsMathematics::Category TheoryFOS: Mathematicsinternal groupsMathematics - Category TheoryCategory Theory (math.CT)2-groupsPseudofunctorSettore MAT/04 - Matematiche Complementari2-groups; internal groups; monoidal opfibration; Pseudofunctor18A40 18C40 18D30 18G45 18M05monoidal opfibration
researchProduct

Distributors and the comprehensive factorization system for internal groupoids

2017

In this note we prove that distributors between groupoids in a Barr-exact category epsilon form the bicategory of relations relative to the comprehensive factorization system in Gpd(epsilon). The case epsilon = Set is of special interest.

Settore MAT/02 - AlgebraMathematics::Category Theoryinternal groupoidprofunctorFOS: MathematicsMathematics - Category TheoryCategory Theory (math.CT)factorization systemdistributor18A32 20L05
researchProduct