Search results for "Fusion system"

showing 10 items of 50 documents

A SUBCRITICAL BIFURCATION FOR A NONLINEAR REACTION–DIFFUSION SYSTEM

2010

In this paper the mechanism of pattern formation for a reaction-diffusion system with nonlinear diffusion terms is investigated. Through a linear stability analysis we show that the cross-diffusion term allows the pattern formation. To predict the form and the amplitude of the pattern we perform a weakly nonlinear analysis. In the supercritical case the Stuart-Landau equation is found, which rules the evolution of the amplitude of the most unstable mode. With the increasing distance from the bifurcation value of the cross-diffusion parameter, the weakly nonlinear analysis fails and a Fourier–Galerkin approach is adopted. In the subcritical case the weakly nonlinear analysis must be pushed u…

Period-doubling bifurcationNonlinear systemTranscritical bifurcationNonlinear resonanceMathematical analysisReaction–diffusion systemSaddle-node bifurcationBifurcation diagramNonlinear Sciences::Pattern Formation and SolitonsBifurcationMathematicsWaves and Stability in Continuous Media
researchProduct

Polymorphic and regular localized activity structures in a two-dimensional two-component reaction–diffusion lattice with complex threshold excitation

2010

Abstract Space–time dynamics of the system modeling collective behaviour of electrically coupled nonlinear units is investigated. The dynamics of a local cell is described by the FitzHugh–Nagumo system with complex threshold excitation. It is shown that such a system supports formation of two distinct kinds of stable two-dimensional spatially localized moving structures without any external stabilizing actions. These are regular and polymorphic structures. The regular structures preserve their shape and velocity under propagation while the shape and velocity as well as other integral characteristics of polymorphic structures show rather complex temporal behaviour. Both kinds of structures r…

Phase spaceLattice (order)Quasiperiodic functionReaction–diffusion systemBound statePattern formationStatistical and Nonlinear PhysicsGeometryStatistical physicsCondensed Matter PhysicsBifurcationMultistabilityMathematicsPhysica D: Nonlinear Phenomena
researchProduct

On the dynamics of dislocation patterning

1997

Recent computer simulations on dislocation patterning have provided remarkable results in accordance with empirical laws. Moreover, several analytical models on dislocation dynamics have provided qualitative insight on dislocation patterning. However, a model, based on partial differential equations, which gives a dynamical evolution of dislocation patterns in function of measurable variables still missing. Here, we give a re-formulation of a model proposed some years ago. From this formulation, we obtained that the onset of a dislocation instability is related to the applied stress. The analytical and numerical results reported are partial and studies on this direction are under developmen…

PhysicsPartial differential equationDiffusion equationComputer simulationMechanical EngineeringCondensed Matter PhysicsInstabilityStress (mechanics)Condensed Matter::Materials ScienceClassical mechanicsMechanics of MaterialsReaction–diffusion systemGeneral Materials ScienceStatistical physicsDislocationBifurcationMaterials Science and Engineering: A
researchProduct

Super-critical and sub-critical bifurcations in a reaction-diffusion Schnakenberg model with linear cross-diffusion

2016

In this paper the Turing pattern formation mechanism of a two components reaction-diffusion system modeling the Schnakenberg chemical reaction is considered. In Ref. (Madzavamuse et al., J Math Biol 70(4):709–743, 2015) it was shown how the presence of linear cross-diffusion terms favors the destabilization of the constant steady state. We perform the weakly nonlinear multiple scales analysis to derive the equations for the amplitude of the Turing patterns and to show how the cross-diffusion coefficients influence the occurrence of super-critical or sub-critical bifurcations. We present a numerical exploration of far from equilibrium regimes and prove the existence of multistable stationary…

PhysicsSteady stateApplied MathematicsGeneral MathematicsNumerical analysis010102 general mathematicsPattern formationSettore MAT/01 - Logica Matematica01 natural sciences010305 fluids & plasmasNonlinear systemActivator-inhibitor kinetics Cross-diffusion Turing instability Amplitude equationsAmplitude0103 physical sciencesReaction–diffusion systemStatistical physics0101 mathematicsConstant (mathematics)Settore MAT/07 - Fisica MatematicaTuringcomputercomputer.programming_languageRicerche di Matematica
researchProduct

On finite p-groups of supersoluble type

2021

Abstract A finite p-group S is said to be of supersoluble type if every fusion system over S is supersoluble. The main aim of this paper is to characterise the finite p-groups of supersoluble type. Abelian and metacyclic p-groups of supersoluble type are completely described. Furthermore, we show that the Sylow p-subgroups of supersoluble type of a finite simple group must be cyclic.

Pure mathematicsAlgebra and Number Theory010102 general mathematicsSylow theoremsType (model theory)01 natural sciencesFusion systemSimple group0103 physical sciencesÀlgebra010307 mathematical physics0101 mathematicsAbelian groupMatemàticaMathematicsJournal of Algebra
researchProduct

Two-Sided Estimates of the Solution Set for the Reaction–Diffusion Problem with Uncertain Data

2009

We consider linear reaction–diffusion problems with mixed Dirichlet–Neumann–Robin conditions. The diffusion matrix, reaction coefficient, and the coefficient in the Robin boundary condition are defined with an uncertainty which allow bounded variations around some given mean values. A solution to such a problem cannot be exactly determined (it is a function in the set of “possible solutions” formed by generalized solutions related to possible data). The problem is to find parameters of this set. In this paper, we show that computable lower and upper bounds of the diameter (or radius) of the set can be expressed throughout problem data and parameters that regulate the indeterminacy range. Ou…

Set (abstract data type)Range (mathematics)Uncertain dataBounded functionMathematical analysisReaction–diffusion systemSolution setFunction (mathematics)Robin boundary conditionMathematics
researchProduct

ANALYTICAL DETERMINATION OF INITIAL CONDITIONS LEADING TO FIRING IN NERVE FIBERS

2007

International audience; An analytical solution characterizing initial conditions leading to action potential firing in smooth nerve fibers is determined, using the bistable equation. In the first place, we present a nontrivial stationary solution wave, then, using the perturbative method, we analyze the stability of this stationary wave. We show that it corresponds to a frontier between the initiation of the travelling waves and a decay to the resting state. Eventually, this analytical approach is extended to FitzHugh-Nagumo model.

StationarityBistability[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]01 natural sciencesStability (probability)010305 fluids & plasmasStanding waveOptics[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesReaction–diffusion systemTraveling wave[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]0101 mathematicsEngineering (miscellaneous)PhysicsQuantitative Biology::Neurons and Cognitionbusiness.industry[SCCO.NEUR]Cognitive science/Neurosciencenerve fibersApplied Mathematics[SCCO.NEUR] Cognitive science/Neurosciencereaction-diffusion[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Mechanics[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph]010101 applied mathematicsModeling and Simulation[ SCCO.NEUR ] Cognitive science/Neuroscience[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Action potential firingbusinessStationary solutionnerve fibers.International Journal of Bifurcation and Chaos
researchProduct

Self-organization in the A + B → 0 reaction of charged particles

1992

The formalism of many-particle densities developed earlier by the authors is applied to the study of the self-organization phenomena occuring during the course of the bimolecular A + B → 0 reaction between charged particles, interacting via the Coulomb law. Unlike the Debye-Huckel theory, charge screening has an essentially non-equilibrium character. It is shown that for the asymmetric mobility of reactants (DA = 0, DB ≠ 0) similar immobile reactants A form aggregates characterized by a sharp maximum, observed at short distances, in the joint correlation function XA(r, t). Such an aggregation leads to the accelerated particle recombination n ∝ t-54 (nA = nB = n) instead of the generally acc…

Statistics and ProbabilityPhysicsSelf-organizationCondensed Matter PhysicsMolecular physicsChemical reactionCharged particleReaction rateCoulomb's lawsymbols.namesakeClassical mechanicsReaction–diffusion systemsymbolsRecombinationAccelerated particlePhysica A: Statistical Mechanics and its Applications
researchProduct

Formation of dislocation patterns: Computer simulations

1996

Dislocations patterns have been extensively studied by means of TEM. In parallel, theoretical approaches have been developed by using two methods; reaction diffusion schemes and computer simulation models. This distinction is not rigid since some computer models include the former approach in their evolution equations. Independently from the difficulties each approach presents in formulating the collective behavior of dislocations, the aim of these studies is to exhibit simple dislocation patterns as persistent slip bands and/or cellular organization. In this context, computer simulations brought a methodology which undoubtedly is a complement to the existing approaches for dislocations. Ne…

Stress (mechanics)Dislocation creepPhysicsCollective behaviorMesoscopic physicsClassical mechanicsLüders bandReaction–diffusion systemContext (language use)Statistical physicsDislocationPhysical Review B
researchProduct

Turing instability and traveling fronts for a nonlinear reaction–diffusion system with cross-diffusion

2012

In this work we investigate the phenomena of pattern formation and wave propagation for a reaction–diffusion system with nonlinear diffusion. We show how cross-diffusion destabilizes uniform equilibrium and is responsible for the initiation of spatial patterns. Near marginal stability, through a weakly nonlinear analysis, we are able to predict the shape and the amplitude of the pattern. For the amplitude, in the supercritical and in the subcritical case, we derive the cubic and the quintic Stuart–Landau equation respectively. When the size of the spatial domain is large, and the initial perturbation is localized, the pattern is formed sequentially and invades the whole domain as a travelin…

WavefrontNumerical AnalysisQuintic Stuart–Landau equationGeneral Computer ScienceWave propagationApplied MathematicsNonlinear diffusionMathematical analysisPattern formationTheoretical Computer ScienceQuintic functionNonlinear systemAmplitudeModeling and SimulationReaction–diffusion systemPattern formationAmplitude equationMarginal stabilityMathematicsGinzburg–Landau equation
researchProduct