Search results for "GALAXIES"
showing 10 items of 341 documents
Multifrequency Studies of the Peculiar Quasar 4C +21.35 during the 2010 Flaring Activity
2014
著者人数: 290名
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
2010
Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, 6 x 10(19) eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1 degrees from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating…
An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray …
2018
A new analysis of the dataset from the Pierre Auger Observatory provides evidence for anisotropy in the arrival directions of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivals from strong, nearby sources. The data consist of 5514 events above 20 EeV with zenith angles up to 80 deg recorded before 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-ray emitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxies from a sample that was examined with Fermi-LAT. Flux-limited samples, which include all types of galaxies from the Swift-BAT and 2MASS …
The ALHAMBRA survey: Accurate merger fractions by PDF analysis of photometric close pairs
2014
Our goal is to develop and test a novel methodology to compute accurate close pair fractions with photometric redshifts. We improve the current methodologies to estimate the merger fraction f_m from photometric redshifts by (i) using the full probability distribution functions (PDFs) of the sources in redshift space, (ii) including the variation in the luminosity of the sources with z in both the selection of the samples and in the luminosity ratio constrain, and (iii) splitting individual PDFs into red and blue spectral templates to deal robustly with colour selections. We test the performance of our new methodology with the PDFs provided by the ALHAMBRA photometric survey. The merger frac…
$\mathrm{morphofit}$: An automated galaxy structural parameters fitting package
2023
In today's modern wide-field galaxy surveys, there is the necessity for parametric surface brightness decomposition codes characterised by accuracy, small degree of user intervention, and high degree of parallelisation. We try to address this necessity by introducing $\mathrm{morphofit}$, a highly parallelisable $\mathrm{Python}$ package for the estimate of galaxy structural parameters. The package makes use of wide-spread and reliable codes, namely $\mathrm{SExtractor}$ and $\mathrm{GALFIT}$. It has been optimised and tested in both low-density and crowded environments, where blending and diffuse light makes the structural parameters estimate particularly challenging. $\mathrm{morphofit}$ …
The ALMA REBELS Survey: The First Infrared Luminosity Function Measurement at $\mathbf{z \sim 7}
2023
We present the first observational infrared luminosity function (IRLF) measurement in the Epoch of Reionization (EoR) based on a UV-selected galaxy sample with ALMA spectroscopic observations. Our analysis is based on the ALMA large program Reionization Era Bright Emission Line Survey (REBELS), which targets 42 galaxies at $\mathrm{z=6.4-7.7}$ with [CII] 158$\micron$ line scans. 16 sources exhibit a dust detection, 15 of which are also spectroscopically confirmed through the [CII] line. The IR luminosities of the sample range from $\log L_{IR}/L_\odot=11.4$ to 12.2. Using the UVLF as a proxy to derive the effective volume for each of our target sources, we derive IRLF estimates, both for de…
High redshift galaxies in the ALHAMBRA survey. II. Strengthening the evidence of bright-end excess in UV luminosity functions at 2.5 <= z<= 4.5 by PD…
2018
Context. Knowing the exact shape of the ultraviolet (UV) luminosity function (LF) of high-redshift galaxies is important to understand the star formation history of the early Universe. However, the uncertainties, especially at the faint and bright ends of the LFs, remain significant. Aims. In this paper, we study the UV LF of redshift z = 2:5 4.5 galaxies in 2.38 deg of ALHAMBRA data with I ≤ 24. Thanks to the large area covered by ALHAMBRA, we particularly constrain the bright end of the LF. We also calculate the cosmic variance and the corresponding bias values for our sample and derive their host dark matter halo masses. Methods.We have used a novel methodology based on redshift and magn…
A faint outburst of the accreting millisecond X-ray pulsar SAX J1748.9-2021 in NGC 6440
2018
SAX J1748.9-2021 is an accreting X-ray millisecond pulsar observed in outburst five times since its discovery in 1998. In early October 2017, the source started its sixth outburst, which lasted only ~13 days, significantly shorter than the typical 30 days duration of the previous outbursts. It reached a 0.3-70 keV unabsorbed peak luminosity of $\sim3\times10^{36}$ erg/s. This is the weakest outburst ever reported for this source to date. We analyzed almost simultaneous XMM-Newton, NuSTAR and INTEGRAL observations taken during the decaying phase of its 2017 outburst. We found that the spectral properties of SAX J1748.9-2021 are consistent with an absorbed Comptonization plus a blackbody comp…
Stability analysis of relativistic jets from collapsars and its implications on the short-term variability of gamma-ray bursts
2002
We consider the transverse structure and stability properties of relativistic jets formed in the course of the collapse of a massive progenitor. Our numerical simulations show the presence of a strong shear in the bulk velocity of such jets. This shear can be responsible for a very rapid shear--driven instability that arises for any velocity profile. This conclusion has been confirmed both by numerical simulations and theoretical analysis. The instability leads to rapid fluctuations of the main hydrodynamical parameters (density, pressure, Lorentz factor, etc.). However, the perturbations of the density are effectively decoupled from those of the pressure because the beam of the jet is radi…
The role of Kelvin-Helmholtz instability in the internal structure of relativistic outflows. The case of the jet in 3C 273
2006
Relativistic outflows represent one of the best-suited tools to probe the physics of AGN. Numerical modelling of internal structure of the relativistic outflows on parsec scales provides important clues about the conditions and dynamics of the material in the immediate vicinity of the central black holes in AGN. We investigate possible causes of the structural patterns and regularities observed in the parsec-scale jet of the well-known quasar 3C 273. We present here the results from a 3D relativistic hydrodynamics numerical simulation based on the parameters given for the jet by Lobanov & Zensus (2001), and one in which the effects of jet precession and the injection of discrete compone…