Search results for "GAMMA-RAY BURST"
showing 10 items of 132 documents
Ultra-Fast Flash Observatory for the observation of early photons from gamma-ray bursts
2013
One of the least documented and understood aspects of gamma-ray bursts (GRBs) is the rise phase of the optical light curve. The Ultra-Fast Flash Observatory (UFFO) is an effort to address this question through extraordinary opportunities presented by a series of space missions including a small spacecraft observatory. The UFFO is equipped with a fast-response Slewing Mirror Telescope (SMT) that uses a rapidly moving mirror or mirror array to redirect the optical beam rather than slewing the entire spacecraft to aim the optical instrument at the GRB position. The UFFO will probe the early optical rise of GRBs with sub-second response, for the first time, opening a completely new frontier in …
Exploring Broadband GRB Behavior During gamma-ray Emission
2007
The robotic ROTSE-III telescope network detected prompt optical emission contemporaneous with the gamma-ray emission of Swift events GRB051109A and GRB051111. Both datasets have continuous coverage at high signal-to-noise levels from the prompt phase onwards, thus the early observations are readily compared to the Swift XRT and BAT high energy detections. In both cases, the optical afterglow is established, declining steadily during the prompt emission. For GRB051111, there is evidence of an excess optical component during the prompt emission. The component is consistent with the flux spectrally extrapolated from the gamma-rays, using the gamma-ray spectral index. A compilation of spectral …
GRB 050410 and GRB 050412: are they really dark gamma-ray bursts?
2007
We present a detailed analysis of the prompt and afterglow emission of GRB 050410 and GRB 050412 detected by Swift for which no optical counterpart was observed. The 15-150 keV energy distribution of the GRB 050410 prompt emission shows a peak energy at 53 keV. The XRT light curve of this GRB decays as a power law with a slope of alpha=1.06+/-0.04. The spectrum is well reproduced by an absorbed power law with a spectral index Gamma_x=2.4+/-0.4 and a low energy absorption N_H=4(+3;-2)x10^21 cm^(-2) which is higher than the Galactic value. The 15-150 keV prompt emission in GRB 050412 is modelled with a hard (Gamma=0.7+/-0.2) power law. The XRT light curve follows a broken power law with the f…
GRB 030227: The first multiwavelength afterglow of an INTEGRAL GRB
2003
We present multiwavelength observations of a gamma-ray burst detected by INTEGRAL (GRB 030227) between 5.3 hours and ~1.7 days after the event. Here we report the discovery of a dim optical afterglow (OA) that would not have been detected by many previous searches due to its faintess (R~23). This OA was seen to decline following a power law decay with index Alpha_R= -0.95 +/- 0.16. The spectral index Beta_opt/NIR yielded -1.25 +/- 0.14. These values may be explained by a relativistic expansion of a fireball (with p = 2.0) in the cooling regime. We also find evidence for inverse Compton scattering in X-rays.
Erratum: On the existence of a luminosity threshold of GRB jets in massive stars
2019
Swift Observations of GRB 070110: An Extraordinary X-Ray Afterglow Powered by the Central Engine
2007
We present a detailed analysis of Swift multi-wavelength observations of GRB 070110 and its remarkable afterglow. The early X-ray light curve, interpreted as the tail of the prompt emission, displays a spectral evolution already seen in other gamma-ray bursts. The optical afterglow shows a shallow decay up to ~2 d after the burst, which is not consistent with standard afterglow models. The most intriguing feature is a very steep decay in the X-ray flux at ~20 ks after the burst, ending an apparent plateau. The abrupt drop of the X-ray light curve rules out an external shock as the origin of the plateau in this burst and implies long-lasting activity of the central engine. The temporal and s…
The Status of the Ultra Fast Flash Observatory - Pathfinder
2012
On behalf of the UFFO Collaboration; International audience; The Ultra Fast Flash Observatory (UFFO) is a project to study early optical emissions from Gamma Ray Bursts (GRBs). The primary scientific goal of UFFO is to see if GRBs can be calibrated with their rising times, so that they could be used as new standard candles. In order to minimize delay in optical follow-up measurements, which is now about 100 sec after trigger from the Swift experiment, we rotate a mirror to redirect light path so that optical measurement can be performed within a second after the trigger. We have developed a pathfinder mission, UFFO-pathfinder to launch on board the Lomonosov satellite in 2012. In this talk,…
Possible detection of a radio event correlated with a γ-ray burst
1977
COSMIC bursts of electromagnetic radiation, both isolated and in connection with other impulsive astrophysical phenomena, have been sought for many years1, with only one suggestive positive result2, until, in 1973, the discovery of γ-ray bursts3 of cosmic origin prompted a new series of observations4. In 1975 we started a systematic search for electromagnetic bursts at v.h.f. and u.h.f. The system, based at Medicina (Bologna, Italy), is semi-automatic and assures highly efficient data collection. Simultaneous observations at different frequencies facilitate the evaluation of disturbances of local origin and, hopefully, their isolation. Regular observations started in July 1976, and we repor…
ERRATUM: "Search for High-Energy Muon Neutrinos from the "Naked-Eye" GRB 080319B with the Icecube Neutrino Telescope" (2009, ApJ, 701, 1721)
2009
We have noticed some mistakes in formulae (A2) and (A5) in the appendix of our paper. The errors are not present in the code used in the analysis and hence none of the plots or results is affected. The correct formulae are below.
Design and implementation of electronics and data acquisition system for Ultra-Fast Flash Observatory
2013
The Ultra-Fast Flash Observatory (UFFO) Pathfinder for Gamma-Ray Bursts (GRBs) consists of two telescopes. The UFFO Burst Alert & Trigger Telescope (UBAT) handles the detection and localization of GRBs, and the Slewing Mirror Telescope (SMT) conducts the measurement of the UV/optical afterglow. UBAT is equipped with an X-ray detector, analog and digital signal readout electronics that detects X-rays from GRBs and determines the location. SMT is equipped with a stepping motor and the associated electronics to rotate the slewing mirror targeting the GRBs identified by UBAT. First the slewing mirror points to a GRB, then SMT obtains the optical image of the GRB using the intensified CCD an…