Search results for "GAMMA-RAY"

showing 10 items of 374 documents

Why Have Many of the Brightest Radio-loud Blazars Not Been Detected in Gamma-Rays by Fermi?

2015

We use the complete MOJAVE 1.5 Jy sample of active galactic nuclei (AGNs) to examine the gamma-ray detection statistics of the brightest radio-loud blazars in the northern sky. We find that 23% of these AGNs were not detected above 0.1 GeV by the Fermi-LAT during the four-year 3FGL catalog period partly because of an instrumental selection effect and partly due to their lower Doppler boosting factors. Blazars with synchrotron peaks in their spectral energy distributions located below 10^(13.4) Hz also tend to have high-energy peaks that lie below the 0.1 GeV threshold of the LAT, and are thus less likely to be detected by Fermi. The non-detected AGNs in the 1.5 Jy sample also have significa…

AstrofísicaActive galactic nucleusmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical Phenomenajets [galaxies]AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsgeneral [gamma-ray burst]7. Clean energy01 natural scienceslaw.inventionsymbols.namesakelaw0103 physical sciencesBlazar010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsmedia_commonPhysicsgeneral [quasars]010308 nuclear & particles physicsScatteringSpectral densityAstronomy and Astrophysicsgalaxies [radio continuum]Synchrotron13. Climate actionSpace and Planetary ScienceSkyactive [galaxies]AstronomiasymbolsDoppler effectFermi Gamma-ray Space Telescope
researchProduct

Relativistic simulations of black hole-neutron star coalescence: the jet emerges

2014

We perform magnetohydrodynamic simulations in full general relativity (GRMHD) of a binary black hole-neutron star on a quasicircular orbit that undergoes merger. The binary mass ratio is 3:1, the black hole initial spin parameter $a/m=0.75$ ($m$ is the black hole Christodoulou mass) aligned with the orbital angular momentum, and the neutron star is an irrotational $\Gamma=2$ polytrope. About two orbits prior to merger (at time $t=t_B$), we seed the neutron star with a dynamically weak interior dipole magnetic field that extends into the stellar exterior. At $t=t_B$ the exterior has a low-density atmosphere with constant plasma parameter $\beta\equiv P_{\rm gas}/P_{\rm mag}$. Varying $\beta$…

AstrofísicaAngular momentumGeneral relativityAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyGeneral Relativity and Quantum Cosmology0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsMass ratioPolytropeBlack holeNeutron starSpace and Planetary ScienceAstronomiaAstrophysics::Earth and Planetary AstrophysicsGamma-ray burstAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Binary neutron star mergers: a jet engine for short gamma-ray bursts

2016

We perform magnetohydrodynamic simulations in full general relativity (GRMHD) of quasi-circular, equal-mass, binary neutron stars that undergo merger. The initial stars are irrotational, $n=1$ polytropes and are magnetized. We explore two types of magnetic-field geometries: one where each star is endowed with a dipole magnetic field extending from the interior into the exterior, as in a pulsar, and the other where the dipole field is initially confined to the interior. In both cases the adopted magnetic fields are initially dynamically unimportant. The merger outcome is a hypermassive neutron star that undergoes delayed collapse to a black hole (spin parameter $a/M_{\rm BH} \sim 0.74$) imme…

AstrofísicaAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyArticlePulsar0103 physical sciencesBinary starAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsBlack holeNeutron starStarsSpace and Planetary ScienceAstronomiaAstrophysics::Earth and Planetary AstrophysicsGamma-ray burstAstrophysics - High Energy Astrophysical PhenomenaMagnetic dipole
researchProduct

The Gamma-Ray Emitting Radio-Loud Narrow-Line Seyfert 1 Galaxy PKS 2004-447 II. The Radio View

2015

Gamma-ray detected radio-loud narrow-line Seyfert 1 (g-NLS1) galaxies constitute a small but interesting sample of the gamma-ray loud AGN. The radio-loudest g-NLS1 known, PKS 2004-447, is located in the southern hemisphere and is monitored in the radio regime by the multiwavelength monitoring program TANAMI. We aim for the first detailed study of the radio morphology and long-term radio spectral evolution of PKS 2004-447, which are essential to understand the diversity of the radio properties of g-NLS1s. The TANAMI VLBI monitoring program uses the Australian Long Baseline Array (LBA) and telescopes in Antarctica, Chile, New Zealand, and South Africa to monitor the jets of radio-loud active …

AstrofísicaBrightnessActive galactic nucleusAstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral line0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsGamma rayAstronomy and AstrophysicsSpectral componentMonitoring programGalaxySpace and Planetary ScienceComputingMethodologies_DOCUMENTANDTEXTPROCESSINGAstronomiaAstrophysics - High Energy Astrophysical PhenomenaFermi Gamma-ray Space Telescope
researchProduct

Radio and gamma-ray properties of extragalactic jets from the TANAMI sample

2016

Using high-resolution radio imaging with VLBI techniques, the TANAMI program has been observing the parsec-scale radio jets of southern (declination south of -30{\deg}) gamma-ray bright AGN simultaneously with Fermi/LAT monitoring of their gamma-ray emission. We present the radio and gamma-ray properties of the TANAMI sources based on one year of contemporaneous TANAMI and Fermi/LAT data. A large fraction (72%) of the TANAMI sample can be associated with bright gamma-ray sources for this time range. Association rates differ for different optical classes with all BL Lacs, 76% of quasars and just 17% of galaxies detected by the LAT. Upper limits were established on the gamma-ray flux from TAN…

AstrofísicaBrightnessCosmology and Nongalactic Astrophysics (astro-ph.CO)010504 meteorology & atmospheric sciencesAstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesDeclinationRadio continuum: galaxies0103 physical sciencesVery-long-baseline interferometryGalaxies; Interferometry; Luminance; Radio astronomy; Temperature Galaxies : active; Galaxies: nuclei; Galaxies:jets; Gamma rays: galaxies; Radio continuum: galaxies Gamma rays; Galaxies: active; Galaxies: jets; Galaxies: nuclei; Gamma rays: galaxies; Radio continuum: galaxiesRadio astronomyBlazar010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsGalaxies: nuclei0105 earth and related environmental sciencesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsGalaxies : activeGalaxies:jetsGamma raysTemperatureGamma rayAstronomy and AstrophysicsQuasarGalaxies: activeGalaxiesGalaxyGamma rays: galaxiesInterferometryLuminanceGalaxies: jetsSpace and Planetary ScienceAstronomiaComputingMethodologies_DOCUMENTANDTEXTPROCESSINGAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic AstrophysicsFermi Gamma-ray Space TelescopeAstronomy & Astrophysics
researchProduct

A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007

2013

A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two sup…

AstrofísicaEXPLOSIONSHigh energyPhotonPOINT SOURCESSUPERCONDUCTING COSMIC STRINGSGravitational waves / experimentsGravitational waves/experimentsAstrophysics01 natural scienceshigh energy neutrinosgravitational wavesgravitational waves / experiment010303 astronomy & astrophysicsQCmedia_commonLine (formation)QBPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)GAMMA-RAY BURSTSdark matter detectorsGravitational waves / experiments; Neutrino astronomy; Astronomy and Astrophysicshigh energy neutrinos[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicsgravitational waves; gravitational waves / experiments; neutrino astronomy; high energy neutrinos; high energy neutrinosgravitational wavesgravitational wavesparticle physics - cosmology connectionNeutrino astronomyCOSMIC STRINGSRELATIVISTIC JETSNeutrinoAstrophysics - High Energy Astrophysical Phenomenasupersymmetry and cosmology[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]gravitational waves / experiments; neutrino astronomyTELESCOPEmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaSCIENCE RUNFOS: Physical sciencesddc:500.2GAMMA-RAY BURSTS; CORE-COLLAPSE SUPERNOVAE; SUPERCONDUCTING COSMIC STRINGS; MAGNETAR GIANT FLARES; SCIENCE RUN; RELATIVISTIC JETS; POINT SOURCES; BLACK-HOLES; LOCAL-RATE; TELESCOPEGravitational wavesGeneral Relativity and Quantum CosmologyCORE-COLLAPSE SUPERNOVAESettore FIS/05 - Astronomia e AstrofisicaCoincidentneutrino experiments0103 physical sciences010306 general physicsMAGNETAR GIANT FLARESBLACK-HOLESHigh Energy Astrophysical PhenomenaGravitational waveAstronomy[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astronomy and AstrophysicsDRIVENUniverseLIGOGIANT FLARESLOCAL-RATEFISICA APLICADALUMINOSITYRADIATIONHigh Energy Physics::Experiment[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Experiments[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope

2013

A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV-PeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.

AstrofísicaFLUX[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]neutrino experiments; neutrino astronomy; gamma ray bursts theoryPOINT SOURCESPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaREDSHIFTFluxFOS: Physical sciencesAstrophysics01 natural sciencesICECUBEneutrino astronomyneutrino experiments0103 physical sciencesgamma ray bursts theory010303 astronomy & astrophysicsNeutrino experimentsATMOSPHERIC MUONSPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)MuonGamma ray bursts theory010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]High Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsAstronomygamma ray bursts theory; neutrino astronomy; neutrino experimentsAstronomy and Astrophysicsgamma ray burstsCATALOGRedshiftNeutrino detectorNeutrino astronomyFISICA APLICADAneutrino experimentHigh Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burstSYSTEM
researchProduct

A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing R…

2019

We present a search for prompt gamma-ray counterparts to compact binary coalescence gravitational wave (GW) candidates from Advanced LIGO's first observing run (O1). As demonstrated by the multimessenger observations of GW170817/GRB 170817A, electromagnetic and GW observations provide complementary information about the astrophysical source and, in the case of weaker candidates, may strengthen the case for an astrophysical origin. Here we investigate low-significance GW candidates from the O1 compact-binary coalescence searches using the Fermi Gamma-ray Burst Monitor (GBM), leveraging its all-sky and broad energy coverage. Candidates are ranked and compared to background to measure signific…

AstrofísicaGravitacióAstronomyAstrophysics::High Energy Astrophysical Phenomenagamma-ray burst: generalFOS: Physical sciencesAstrophysicsAstronomy & Astrophysicsgeneral [gamma-ray burst]01 natural sciencesCoincidenceCoincident0103 physical sciences010306 general physics010303 astronomy & astrophysicsgravitational waveSTFCQCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01Physicsastro-ph.HEScience & TechnologySolar flareGravitational wavegamma-ray burst: general; gravitational waves; Astronomy and Astrophysics; Space and Planetary ScienceRCUKAstronomy and AstrophysicsAstronomy and AstrophysicLIGOPhysics and Astronomygravitational wavesSpace and Planetary SciencePhysical Sciencesgamma-ray burst: general; gravitational wavesgeneral; gravitational waves; Astronomy and Astrophysics; Space and Planetary Science [gamma-ray burst]False alarmAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Fermi Gamma-ray Space Telescope
researchProduct

Properties of the Binary Neutron Star Merger GW170817

2019

On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models, which ar…

AstrofísicaGravitacióneutron star: binaryAstronomyGeneral Physics and AstronomyBinary numberAstrophysicsELECTROMAGNETIC COUNTERPARTspin01 natural sciencesGeneral Relativity and Quantum CosmologyGRAVITATIONAL-WAVESlocalization010305 fluids & plasmasGravitational wave detectorsEQUATIONenergy: densityLIGOGEO600QCastro-ph.HESettore FIS/01PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)GAMMA-RAY BURSTSSettore FIS/05PhysicsEquations of stateGravitational effectsGravitational-wave signalsDeformability parameterAmplitudePhysical SciencesPhysical effectsINSPIRALING COMPACT BINARIES[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Spectral energy densityAstrophysics - High Energy Astrophysical PhenomenaPARAMETER-ESTIMATIONBinary neutron starsdata analysis methodgr-qcQC1-999Physics MultidisciplinaryFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesBayesianGravimeterselectromagnetic field: productionPhysics and Astronomy (all)galaxy: binary0103 physical sciencesddc:530SDG 7 - Affordable and Clean Energy010306 general physicsgravitational radiation: frequencySTFCAstrophysics::Galaxy Astrophysicsequation of stateLIGHT CURVESEquation of stateScience & Technology/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energySpinsgravitational radiationRCUKSpectral densityKILONOVATRANSIENTSbinary: compactStarsGEO600GalaxyLIGOgravitational radiation detectorNeutron starVIRGOPhysics and Astronomygravitational radiation: emissionRADIATIONBayesian AnalysisDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

2017

On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anticoincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is $5.0\times 10^{-8}$. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short gamma-ray bursts. We use the ob…

AstrofísicaGravitacióneutron star: binaryclose [binaries]Astronomy[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]BATSE OBSERVATIONSgamma-ray burst: generalEQUIVALENCE PRINCIPLEEXTENDED EMISSIONastro-ph.HE; astro-ph.HEAstrophysicsKilonovageneral [gamma-ray burst]01 natural sciences7. Clean energyGeneral Relativity and Quantum Cosmologyphoton: velocityPROMPT EMISSIONLIGOclose gamma-ray burst: general gravitational waves [binaries]gravitational wave010303 astronomy & astrophysicsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)BURST SPECTRAQCQBPhysicsastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)binaries: closeGRBEQUATION-OF-STATEviolation: Lorentzgamma ray: emissiongravitational wavesAstrophysics - High Energy Astrophysical PhenomenaGWradiation: electromagneticAfterglow Light CurvesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burstinvariance: LorentzGW GRB LIGO Virgo Fermi BNSGLASTOptical Afterglows0103 physical sciencesgamma ray: detectorBinaries: close; gamma-ray burst: general; gravitational wavesSTFCFermi010308 nuclear & particles physicsGravitational waveVirgogravitational radiationRCUKAstronomy and AstrophysicsAstronomy and Astrophysictime delaysensitivityShapiro delayLIGORedshiftNeutron starVIRGOPhysics and AstronomyHOST GALAXYCPT VIOLATION13. Climate actiongravitationSpace and Planetary ScienceLUMINOSITY FUNCTIONVIEWING ANGLEbinaries: close; gamma-ray burst: general; gravitational waves; Astronomy and Astrophysics; Space and Planetary ScienceBNSspectrometerGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]redshift: measuredFermi Gamma-ray Space TelescopeAstrophysical Journal Letters
researchProduct