Search results for "GASES"
showing 10 items of 1098 documents
Ocean acidification at a coastal CO2 vent induces expression of stress-related transcripts and transposable elements in the sea anemone Anemonia viri…
2019
Published version, available at: https://doi.org/10.1371/journal.pone.0210358 Ocean acidification threatens to disrupt interactions between organisms throughout marine ecosystems. The diversity of reef-building organisms decreases as seawater CO2 increases along natural gradients, yet soft-bodied animals, such as sea anemones, are often resilient. We sequenced the polyA-enriched transcriptome of adult sea anemone Anemonia viridis and its dinoflagellate symbiont sampled along a natural CO2 gradient in Italy to assess stress levels in these organisms. We found that about 1.4% of the anemone transcripts, but only ~0.5% of the Symbiodinium sp. transcripts were differentially expressed. Processe…
Biotrickling filter modeling for styrene abatement. Part 1: Model development, calibration and validation on an industrial scale
2017
Abstract A three-phase dynamic mathematical model based on mass balances describing the main processes in biotrickling filtration: convection, mass transfer, diffusion, and biodegradation was calibrated and validated for the simulation of an industrial styrene-degrading biotrickling filter. The model considered the key features of the industrial operation of biotrickling filters: variable conditions of loading and intermittent irrigation. These features were included in the model switching from the mathematical description of periods with and without irrigation. Model equations were based on the mass balances describing the main processes in biotrickling filtration: convection, mass transfe…
Aeration control in membrane bioreactor for sustainable environmental footprint
2020
In this study different scenarios were scrutinized to minimize the energy consumption of a membrane bioreactor system for wastewater treatment. Open-loop and closed-loop scenarios were investigated by two-step cascade control strategies based on dissolved oxygen, ammonia and nitrite concentrations. An integrated MBR model which includes also the greenhouse gas formation/emission processes was applied. A substantial energy consumption reduction was obtained for the closed-loop scenarios (32% for Scenario 1 and 82% for Scenario 2). The air flow control based on both ammonia and nitrite concentrations within the aerobic reactor (Scenario 2) provided excellent results in terms of reduction of o…
A plant-wide modelling comparison between membrane bioreactors and conventional activated sludge
2020
Abstract A comprehensive plant-wide mathematical modelling comparison between conventional activated sludge (CAS) and Membrane bioreactor (MBR) systems is presented. The main aim of this study is to highlight the key features of CAS and MBR in order to provide a guide for an effective plant operation. A scenario analysis was performed to investigate the influence on direct and indirect greenhouse gas (GHG) emissions and operating costs of (i) the composition of inflow wastewater (scenario 1), (ii) operating conditions (scenario 2) and (iii) oxygen transfer efficiency (scenario 3). Scenarios show higher indirect GHG emissions for MBR than CAS, which result is related to the higher energy con…
Integrated membrane bioreactors modelling: A review on new comprehensive modelling framework
2021
International audience; Integrated Membrane Bioreactor (MBR) models, combination of biological and physical models, have been representing powerful tools for the accomplishment of high environmental sustainability. This paper, produced by the International Water Association (IWA) Task Group on Membrane Modelling and Control, reviews the state-of-the-art, identifying gaps for future researches, and proposes a new integrated MBR modelling framework. In particular, the framework aims to guide researchers and managers in pursuing good performances of MBRs in terms of effluent quality, operating costs (such as membrane fouling, energy consumption due to aeration) and mitigation of greenhouse gas…
Carbon metabolic rates and GHG emissions in different wetland types of the Ebro Delta
2020
Deltaic wetlands are highly productive ecosystems, which characteristically can act as C-sinks. However, they are among the most threatened ecosystems, being very vulnerable to global change, and require special attention towards its conservation. Knowing their climate change mitigating potential, conservation measures should also be oriented with a climatic approach, to strengthen their regulatory services. In this work we studied the carbon biogeochemistry and the specific relevance of certain microbial guilds on carbon metabolisms of the three main types of deltaic wetlands located in the Ebro Delta, north-eastern Spain, as well as how they deal with human pressures and climate change ef…
Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw
2019
Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long-term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO 2 ) and methane (CH 4 ) to the atmosphere, but how much, at which time-span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant–soil systems (mesocosms) allowed us to simulate permafrost thaw under near-natural conditions. We monitored GHG flux dynamics via high-resolution…
Two-qubit entanglement dynamics for two different non-Markovian environments
2009
We study the time behavior of entanglement between two noninteracting qubits each immersed in its own environment for two different non-Markovian conditions: a high-$Q$ cavity slightly off-resonant with the qubit transition frequency and a nonperfect photonic band-gap, respectively. We find that revivals and retardation of entanglement loss may occur by adjusting the cavity-qubit detuning, in the first case, while partial entanglement trapping occurs in non-ideal photonic-band gap.
Intensified mitophagy in skeletal muscle with aging is downregulated by PGC-1alpha overexpression in vivo.
2018
Mitochondrial dysfunction plays an important role in the etiology of age-related muscle atrophy known as sarcopenia. PGC-1α is positioned at the center of crosstalk in regulating mitochondrial quality control, but its role in mitophagy in aged skeletal muscle is currently unclear. The present study investigated the effects of aging and PGC-1α overexpression via in vivo DNA transfection on key mitophagy protein markers, as well as mitochondrial dynamics related proteins, metabolic function and antioxidant capacity in mouse muscle. C57BL/6J mice at the age of 2 mo (young, Y; N = 14) and 24 mo (old, O; N = 14) were transfected in vivo with either PGC-1α DNA (OE, N = 7) or GFP (N = 7) into the …
Effects of gaseous and solid constituents of air pollution on endothelial function
2018
Abstract Ambient air pollution is a leading cause of non-communicable disease globally. The largest proportion of deaths and morbidity due to air pollution is now known to be due to cardiovascular disorders. Several particulate and gaseous air pollutants can trigger acute events (e.g. myocardial infarction, stroke, heart failure). While the mechanisms by which air pollutants cause cardiovascular events is undergoing continual refinement, the preponderant evidence support rapid effects of a diversity of pollutants including all particulate pollutants (e.g. course, fine, ultrafine particles) and gaseous pollutants such as ozone, on vascular function. Indeed alterations in endothelial function…