Search results for "GENRE"
showing 10 items of 4351 documents
Intelligent agents for feature modelling in computer aided design
2017
Abstract CAD modelling can be referred to as the process of generating an integrated multiple view model as a representation of multiple views of engineering design. In many situations, a change in the model of one view may conflict with the models of other views. In such situations, the model of some views needs to be adapted in order to make all models consistent. Thus, CAD models should be capable of adapting themselves to new situations. Recently, agent based technologies have been considered in order to increase both knowledge level and intelligence of real and virtual objects. The contribution of this paper consists in introducing the intelligent agents in intelligent CAD modelling. T…
Assembly Process Modeling Through Long Short-Term Memory
2021
This paper studies Long Short-Term Memory as a component of an adaptive assembly assistance system suggesting the next manufacturing step. The final goal is an assistive system able to help the inexperienced workers in their training stage or even experienced workers who prefer such support in their manufacturing activity. In contrast with the earlier analyzed context-based techniques, Long Short-Term Memory can be applied in unknown scenarios. The evaluation was performed on the data collected previously in an experiment with 68 participants assembling as target product a customizable modular tablet. We are interested in identifying the most accurate method of next assembly step prediction…
Extreme Learning Machines for Data Classification Tuning by Improved Bat Algorithm
2018
Single hidden layer feed forward neural networks are widely used for various practical problems. However, the training process for determining synaptic weights of such neural networks can be computationally very expensive. In this paper we propose a new learning algorithm for learning the synaptic weights of the single hidden layer feedforward neural networks in order to reduce the learning time. We propose combining the upgraded bat algorithm with the extreme learning machine. The proposed approach reduces the number of evaluations needed to train a neural network and efficiently finds optimal input weights and the hidden biases. The proposed algorithm was tested on standard benchmark clas…
A Review of Recent Range Image Registration Methods with Accuracy Evaluation
2007
International audience; The three-dimensional reconstruction of real objects is an important topic in computer vision. Most of the acquisition systems are limited to reconstruct a partial view of the object obtaining in blind areas and occlusions, while in most applications a full reconstruction is required. Many authors have proposed techniques to fuse 3D surfaces by determining the motion between the different views. The first problem is related to obtaining a rough registration when such motion is not available. The second one is focused on obtaining a fine registration from an initial approximation. In this paper, a survey of the most common techniques is presented. Furthermore, a sampl…
A proposed mapping method for aligning machine execution data to numerical control code
2019
The visions of the digital thread and smart manufacturing have boosted the potential of relating downstream data to upstream decisions in design. However, to date, the tools and methods to robustly map across the related data representations is significantly lacking. In response, we propose a mapping technique for standard manufacturing data representations. Specifically, we focus on relating controller data from machining tools in the form of MTConnect, an emerging standard that defines the vocabulary and semantics as well as communications protocols for execution data, and G-Code, the most widely used standard for numerical control (NC) instructions. We evaluate the efficacy of our mappin…
Adjusted bat algorithm for tuning of support vector machine parameters
2016
Support vector machines are powerful and often used technique of supervised learning applied to classification. Quality of the constructed classifier can be improved by appropriate selection of the learning parameters. These parameters are often tuned using grid search with relatively large step. This optimization process can be done computationally more efficiently and more precisely using stochastic search metaheuristics. In this paper we propose adjusted bat algorithm for support vector machines parameter optimization and show that compared to the grid search it leads to a better classifier. We tested our approach on standard set of benchmark data sets from UCI machine learning repositor…
Exploring Virtual Reality as an Integrated Development Environment for Cyber-Physical Systems
2019
Cyber Physical Systems (CPS) development approaches tend to start from the physical (hardware) perspective, and the software is the final element in the process. However, this approach is unfit for the more software-intensive world that is increasingly iterative, connected, and constantly online. Many constraints prevent the application of iterative, incremental, and agile development methodologies, which now are the norm for many other fields of software. Time-consuming system validation can only start when both hardware and software components are ready, which implies that the software delivery and quality is almost always the final bottleneck in the CPS development and integration. Also …
Modeling Energy Demand Aggregators for Residential Consumers
2013
International audience; Energy demand aggregators are new actors in the energy scenario: they gather a group of energy consumers and implement a demand- response paradigm. When the energy provider needs to reduce the current energy demand on the grid, it can pay the energy demand aggregator to reduce the load by turning off some of its consumers loads or postponing their activation. Currently this operation involves only greedy energy consumers like industrial plants. In this paper we want to study the potential of aggregating a large number of small energy consumers like home users as it may happen in smart grids. In particular we want to address the feasibility of such approach by conside…
Input Selection Methods for Soft Sensor Design: A Survey
2020
Soft Sensors (SSs) are inferential models used in many industrial fields. They allow for real-time estimation of hard-to-measure variables as a function of available data obtained from online sensors. SSs are generally built using industries historical databases through data-driven approaches. A critical issue in SS design concerns the selection of input variables, among those available in a candidate dataset. In the case of industrial processes, candidate inputs can reach great numbers, making the design computationally demanding and leading to poorly performing models. An input selection procedure is then necessary. Most used input selection approaches for SS design are addressed in this …
DESDEO: The Modular and Open Source Framework for Interactive Multiobjective Optimization
2021
Interactive multiobjective optimization methods incorporate preferences from a human decision maker in the optimization process iteratively. This allows the decision maker to focus on a subset of solutions, learn about the underlying trade-offs among the conflicting objective functions in the problem and adjust preferences during the solution process. Incorporating preference information allows computing only solutions that are interesting to the decision maker, decreasing computation time significantly. Thus, interactive methods have many strengths making them viable for various applications. However, there is a lack of existing software frameworks to apply and experiment with interactive …