Search results for "GREENS-FUNCTION"

showing 3 items of 3 documents

Multipactor radiation analysis within a waveguide region based on a frequency-domain representation of the dynamics of charged particles

2009

[EN] A technique for the accurate computation of the electromagnetic fields radiated by a charged particle moving within a parallel-plate waveguide is presented. Based on a transformation of the time-varying current density of the particle into a time-harmonic current density, this technique allows the evaluation of the radiated electromagnetic fields both in the frequency and time domains, as well as in the near- and far-field regions. For this purpose, several accelerated versions of the parallel-plate Green's function in the frequency domain have been considered. The theory has been successfully applied to the multipactor discharge occurring within a two metal-plates region. The proposed…

electromagnetic fieldsMultipactor effectElectromagnetic fieldcurrent densityImage theoryGreens-FunctionElectrodynamicsAcceleratorelectrodynamicsFinite difference time-domain analysisElectromagnetic radiationmicrowave switchesGreen's function methodslaw.inventionPeriodic StructuresOpticsBreakdownCurrent densitylawTEORIA DE LA SEÑAL Y COMUNICACIONESGreen's functionsFrequency-domain analysisfinite difference time-domain analysisEwald MethodPhysicsTeoría de la Señal y las Comunicaciones2-Dbusiness.industryElectromagnetic fieldsMicrowave switcheswaveguidesParallel plate waveguideCharged particleComputational physicsfrequency-domain analysisTransformation (function)Frequency domainModesDischarge3325 Tecnología de las TelecomunicacionesMultipactor effectbusinessWake-FieldWaveguidesWaveguideCurrent densitySimulationPhysical Review E
researchProduct

A many-body approach to transport in quantum systems : From the transient regime to the stationary state

2022

We review one of the most versatile theoretical approaches to the study of time-dependent correlated quantum transport in nano-systems: the non-equilibrium Green's function (NEGF) formalism. Within this formalism, one can treat, on the same footing, inter-particle interactions, external drives and/or perturbations, and coupling to baths with a (piece-wise) continuum set of degrees of freedom. After a historical overview on the theory of transport in quantum systems, we present a modern introduction of the NEGF approach to quantum transport. We discuss the inclusion of inter-particle interactions using diagrammatic techniques, and the use of the so-called embedding and inbedding techniques w…

Statistics and ProbabilityTIME-DEPENDENT TRANSPORTKADANOFF-BAYM EQUATIONSGeneral Physics and AstronomyFOS: Physical sciencesnon-equilibrium Green's functionGREENS-FUNCTIONDENSITY-FUNCTIONAL THEORYCondensed Matter - Strongly Correlated ElectronsPhysics - Chemical PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)COHERENT TRANSPORTSINGLE-MOLECULEkvanttifysiikkamany-body correlationMathematical Physicsquantum transportMEAN-FIELD THEORYChemical Physics (physics.chem-ph)Quantum PhysicsANDERSON-HOLSTEIN MODELCondensed Matter - Mesoscale and Nanoscale PhysicsStrongly Correlated Electrons (cond-mat.str-el)Statistical and Nonlinear PhysicsCHARGE MIGRATIONModeling and Simulationnon-equilibrium Green’s functionQuantum Physics (quant-ph)SHOT-NOISE
researchProduct

Time propagation of the Kadanoff–Baym equations for inhomogeneous systems

2009

We have developed a time propagation scheme for the Kadanoff-Baym equations for general inhomogeneous systems. These equations describe the time evolution of the nonequilibrium Green function for interacting many-body systems in the presence of time-dependent external fields. The external fields are treated nonperturbatively whereas the many-body interactions are incorporated perturbatively using Phi-derivable self-energy approximations that guarantee the satisfaction of the macroscopic conservation laws of the system. These approximations are discussed in detail for the time-dependent Hartree-Fock, the second Born and the GW approximation.

DYNAMICSGW approximationPhysicsConservation lawNONEQUILIBRIUM PROCESSESCondensed Matter - Mesoscale and Nanoscale PhysicsStrongly Correlated Electrons (cond-mat.str-el)Time evolutionFOS: Physical sciencesGeneral Physics and AstronomyNon-equilibrium thermodynamicsELECTRON-GASSEMICONDUCTORSGREENS-FUNCTIONTRANSPORTATOMSCondensed Matter - Other Condensed MatterMOLECULESCondensed Matter - Strongly Correlated ElectronsClassical mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)SCATTERINGPhysical and Theoretical ChemistryOther Condensed Matter (cond-mat.other)The Journal of Chemical Physics
researchProduct