Search results for "Galaxy"

showing 10 items of 1505 documents

Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

2015

Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E ≥ 6×1019 eV by analyzing cosmic rays with energies above E ≥ 5×1018 eV arriving within an angular separation of approximately 15∘. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with …

AstrofísicaPhysics and Astronomy (miscellaneous)Raycosmic radiation anisotropy cosmic radiation propagation cosmic radiation deflectionAstronomymagnetic fieldpAstrophysicsanisotropy [cosmic radiation]01 natural sciencesSettore FIS/04 - Fisica Nucleare e SubnucleareAugerPierre//purl.org/becyt/ford/1 [https]ObservatoryJetsQuantum Chromodynamicscosmic radiation: VHEenergy: correlationPatternsMonte Carlo010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicscosmic radiation: propagationEnergyCOSMIC cancer databaseAngular distance[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsSettore FIS/01 - Fisica SperimentaleSearchAstrophysics::Instrumentation and Methods for Astrophysicscosmic radiation anisotropyPierre Auger Observatorycosmic radiation: deflectionRadiación cósmicaAugerSurface Detector ArrayCosmicArrivalComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaPrincipal axis theorem[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Regular Article - Experimental PhysicsAstrophysics::High Energy Astrophysical PhenomenaPhysics and Astronomy (miscellaneous) Engineering (miscellaneous).FOS: Physical sciencesCosmic ray530cosmic radiation: anisotropyParticle detectorSettore FIS/05 - Astronomia e AstrofisicaVHE [cosmic radiation]statistical analysisSpectrum0103 physical sciencesthrustddc:530Engineering (miscellaneous)AstrophysiqueCiencias ExactasPierre Auger Observatoryair: showerscosmic radiation propagationPhysics and Astronomy (miscellaneous); Engineering (miscellaneous)010308 nuclear & particles physicsturbulence[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FísicaAstroparticles//purl.org/becyt/ford/1.3 [https]ASTROFÍSICAGalactic Magnetic-fieldcorrelation [energy]DirectionExperimental High Energy Physicscosmic radiation deflectionpropagation [cosmic radiation]direct detectiongalaxyObservatory[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]deflection [cosmic radiation]showers [air]Model
researchProduct

Gravitational wave content and stability of uniformly, rotating, triaxial neutron stars in general relativity

2017

Targets for ground-based gravitational wave interferometers include continuous, quasiperiodic sources of gravitational radiation, such as isolated, spinning neutron stars. In this work we perform evolution simulations of uniformly rotating, triaxially deformed stars, the compressible analogues in general relativity of incompressible, Newtonian Jacobi ellipsoids. We investigate their stability and gravitational wave emission. We employ five models, both normal and supramassive, and track their evolution with different grid setups and resolutions, as well as with two different evolution codes. We find that all models are dynamically stable and produce a strain that is approximately one-tenth …

AstrofísicaPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsGravitational waveGeneral relativityFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Compact star01 natural sciencesGeneral Relativity and Quantum CosmologyArticleGravitational energyNumerical relativityClassical mechanicsTests of general relativity0103 physical sciencesAstronomiaTwo-body problem in general relativityAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsGravitational redshift
researchProduct

The stratified two-sided jet of Cygnus A. Acceleration and collimation

2015

High-resolution Very-Long-Baseline Interferometry observations of relativistic jets are essential to constrain fundamental parameters of jet formation models. At a distance of 249 Mpc, Cygnus A is a unique target for such studies, being the only Fanaroff-Riley Class II radio galaxy for which a detailed sub-parsec scale imaging of the base of both jet and counter-jet can be obtained. Observing at millimeter wavelengths unveils those regions which appear self-absorbed at longer wavelengths and enables an extremely sharp view towards the nucleus to be obtained. We performed 7 mm Global VLBI observations, achieving ultra-high resolution imaging on scales down to 90 $\mu$as. This resolution corr…

AstrofísicaPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Jet (fluid)010504 meteorology & atmospheric sciencesRadio galaxyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAcceleration (differential geometry)Astrophysics01 natural sciencesBase (group theory)WavelengthAstrophysical jetSpace and Planetary Science0103 physical sciencesAstronomiaCygnus AAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsSchwarzschild radius0105 earth and related environmental sciences
researchProduct

Accretion disks around binary black holes of unequal mass: General relativistic MHD simulations of postdecoupling and merger

2014

We report results from simulations in general relativity of magnetized disks accreting onto merging black hole binaries, starting from relaxed disk initial data. The simulations feature an effective, rapid radiative cooling scheme as a limiting case of future treatments with radiative transfer. Here we evolve the systems after binary-disk decoupling through inspiral and merger, and analyze the dependence on the binary mass ratio with $q\ensuremath{\equiv}{m}_{\text{bh}}/{M}_{\mathrm{BH}}=1,1/2$, and $1/4$. We find that the luminosity associated with local cooling is larger than the luminosity associated with matter kinetic outflows, while the electromagnetic (Poynting) luminosity associated…

AstrofísicaPhysicsNuclear and High Energy PhysicsActive galactic nucleusX-ray bursterAstrophysics::High Energy Astrophysical PhenomenaAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsMass ratioBlack holeBinary black holeIntermediate-mass black holeAstronomiaStellar black holeSpin-flipAstrophysics::Galaxy AstrophysicsPhysical Review D
researchProduct

CONSTRAINTS ON THE PROGENITOR SYSTEM AND THE ENVIRONS OF SN 2014J FROM DEEP RADIO OBSERVATIONS

2014

We report deep EVN and eMERLIN observations of the Type Ia SN 2014J in the nearby galaxy M 82. Our observations represent, together with JVLA observations of SNe 2011fe and 2014J, the most sensitive radio studies of Type Ia SNe ever. By combining data and a proper modeling of the radio emission, we constrain the mass-loss rate from the progenitor system of SN 2014J to $\dot{M} \lesssim 7.0\times 10^{-10}\, {\rm M_{\odot}\, yr^{-1}}$ (3-$\sigma$; for a wind speed of $100\, {\rm km s^{-1}}$). If the medium around the supernova is uniform, then $n_{\rm ISM} \lesssim 1.3 {\rm cm^3}$ (3-$\sigma$), which is the most stringent limit for the (uniform) density around a Type Ia SN. Our deep upper lim…

AstrofísicaPhysicsSN2014J)Red giantStar (game theory)FOS: Physical sciencesmass-loss [stars]Astronomy and AstrophysicsAstrophysicsType (model theory)Galaxyindividual: SN2011fe SN2014J [Supernovae]SupernovaAstrophysics - Solar and Stellar Astrophysicsindividual (SN2011fe [Supernovae]Space and Planetary ScienceAstronomy Astrophysics and CosmologySolar and Stellar Astrophysics (astro-ph.SR)The Astrophysical Journal
researchProduct

VLBA observations of a rare multiple quasar imaging event caused by refraction in the interstellar medium

2013

We report on the first detection of the theoretically-predicted rare phenomenon of multiple parsec-scale imaging of an active galactic nucleus induced by refractive effects due to localized foreground electron density enhancements, e.g., in an AU-scale plasma lens(es) in the ionized component of the Galactic interstellar medium. We detected multiple imaging in the low galactic latitude (b=-2 deg) quasar 2023+335 from the 15.4 GHz MOJAVE observations when the source was undergoing an ESE. While the parsec-scale jet of the source normally extends along PA -20 deg, in the 28 May 2009 and 23 July 2009 images a highly significant multi-component pattern of secondary images is stretched out nearl…

AstrofísicaProper motionActive galactic nucleusCosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesAngular diameter0103 physical sciencesVery-long-baseline interferometry010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsLine (formation)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsScatteringAstronomy and AstrophysicsQuasarInterstellar mediumSpace and Planetary ScienceAstronomiaAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Modeling the shock-cloud interaction in SN 1006: unveiling the origin of nonthermal X-ray and gamma-ray emission

2016

The supernova remnant SN 1006 is a source of high-energy particles and its southwestern limb is interacting with a dense ambient cloud, thus being a promising region for gamma-ray hadronic emission. We aim at describing the physics and the nonthermal emission associated with the shock-cloud interaction to derive the physical parameters of the cloud (poorly constrained by the data analysis), to ascertain the origin of the observed spatial variations in the spectral properties of the X-ray synchrotron emission, and to predict spectral and morphological features of the resulting gamma-ray emission. We performed 3-D magnetohydrodynamic simulations modeling the evolution of SN 1006 and its inter…

AstrofísicaProper motionMagnetohydrodynamics (MHD)[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Astrophysics::High Energy Astrophysical PhenomenaHadronFOS: Physical sciencesContext (language use)AstrophysicsISM: individual objects: SN 100601 natural sciencesISM: cloudslaw.inventionSettore FIS/05 - Astronomia E AstrofisicalawISM: cloud0103 physical sciencesMagnetohydrodynamic driveSupernova remnant010303 astronomy & astrophysicsISM: supernova remnantAstrophysics::Galaxy Astrophysicsacceleration of particlesISM: supernova remnantsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsclouds; ISM: individual objects: SN 1006; ISM: supernova remnants; Magnetohydrodynamics (MHD); X-rays: ISM; Astronomy and Astrophysics; Space and Planetary Science [Acceleration of particles; ISM]X-rayAstronomy and AstrophysicsAstronomy and AstrophysicAcceleration of particleSynchrotronX-rays: ISMShock (mechanics)Astronomía13. Climate actionSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Magnetorotational Collapse of Supermassive Stars: Black Hole Formation, Gravitational Waves and Jets

2017

We perform MHD simulations in full GR of uniformly rotating stars that are marginally unstable to collapse. Our simulations model the direct collapse of supermassive stars (SMSs) to seed black holes (BHs) that can grow to become the supermassive BHs at the centers of quasars and AGNs. They also crudely model the collapse of massive Pop III stars to BHs, which could power a fraction of distant, long gamma-ray bursts (GRBs). The initial stellar models we adopt are $\Gamma = 4/3$ polytropes seeded with a dynamically unimportant dipole magnetic field (B field). We treat initial B-field configurations either confined to the stellar interior or extending out from the interior into the stellar ext…

AstrofísicaStar (game theory)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)7. Clean energy01 natural sciencesGeneral Relativity and Quantum CosmologyArticleLuminosity0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Supermassive black hole010308 nuclear & particles physicsTorusQuasarRedshiftBlack hole13. Climate actionAstronomiaAstrophysics - High Energy Astrophysical PhenomenaDimensionless quantity
researchProduct

GW170817, General Relativistic Magnetohydrodynamic Simulations, and the Neutron Star Maximum Mass

2017

Recent numerical simulations in general relativistic magnetohydrodynamics (GRMHD) provide useful constraints for the interpretation of the GW170817 discovery. Combining the observed data with these simulations leads to a bound on the maximum mass of a cold, spherical neutron star (the TOV limit): ${M_{\rm max}^{\rm sph}}\lesssim 2.74/\beta$, where $\beta$ is the ratio of the maximum mass of a uniformly rotating neutron star (the supramassive limit) over the maximum mass of a nonrotating star. Causality arguments allow $\beta$ to be as high as $1.27$, while most realistic candidate equations of state predict $\beta$ to be closer to $1.2$, yielding ${M_{\rm max}^{\rm sph}}$ in the range $2.16…

AstrofísicaStar (game theory)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyArticleInterpretation (model theory)Causality (physics)Quantum mechanics0103 physical sciencesBeta (velocity)Limit (mathematics)Magnetohydrodynamic drive010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsMathematical physicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsNeutron starAstronomiaMagnetohydrodynamicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Magnetic Ergostars, Jet Formation and Gamma-Ray Bursts: Ergoregions versus Horizons

2020

We perform the first fully general relativistic, magnetohydrodynamic simulations of dynamically stable hypermassive neutron stars with and without ergoregions to assess the impact of ergoregions on launching magnetically--driven outflows. The hypermassive neutron stars are modeled by a compressible and causal equation of state and are initially endowed with a dipolar magnetic field extending from the stellar interior into its exterior. We find that, after a few Alfv\'en times, magnetic field lines in the ergostar (star that contains ergoregions) and the normal star have been tightly wound in both cases into a helical funnel within which matter begins to flow outward. The maximum Lorentz fac…

AstrofísicaStar (game theory)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyLuminositysymbols.namesakeAstrophysical jet0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsEquation of state (cosmology)Black holeLorentz factorNeutron starsymbolsAstrophysics::Earth and Planetary AstrophysicsGamma-ray burstAstrophysics - High Energy Astrophysical Phenomena
researchProduct