Search results for "Galaxy"
showing 10 items of 1505 documents
Photometric variability of the Be star CoRoT-ID 102761769
2010
Classical Be stars are rapid rotators of spectral type late O to early A and luminosity class V-III, wich exhibit Balmer emission lines and often a near infrared excess originating in an equatorially concentrated circumstellar envelope, both produced by sporadic mass ejection episodes. The causes of the abnormal mass loss (the so-called Be phenomenon) are as yet unknown. For the first time, we can now study in detail Be stars outside the Earth's atmosphere with sufficient temporal resolution. We investigate the variability of the Be Star CoRoT-ID 102761769 observed with the CoRoT satellite in the exoplanet field during the initial run. One low-resolution spectrum of the star was obtained wi…
Study of a sample of faint Be stars in the exofield of CoRoT
2013
International audience; Context. Be stars are probably the most rapid rotators among stars in the main sequence (MS) and, as such, are excellent candidates to study the incidence of the rotation on the characteristics of their non-radial pulsations, as well as on their internal structure. Pulsations are also thought to be possible mechanisms that help the mass ejection needed to build up the circumstellar disks of Be stars.Aims. The purpose of this paper is to identify a number of faint Be stars observed with the CoRoT satellite and to determine their fundamental parameters, which will enable us to study their pulsation properties as a function of the location in the HR diagram and to searc…
Astrometric detection of a low-mass companion orbiting the star AB Doradus
1997
International audience; We report submilliarcsecond-precise astrometric measurements for the late-type star AB Doradus via a combination of VLBI (very long baseline interferometry) and HIPPARCOS data. Our astrometric analysis results in the precise determination of the kinematics of this star, which reveals an orbital motion readily explained as caused by gravitational interaction with a low-mass companion. From the portion of the reÑex orbit covered by our data and using a revised mass of the primary star (0.76 M _) derived from our new value of the parallax (66.3 mas \ n \ 67.2 mas), we Ðnd the dynamical mass of the newly discovered companion to be between 0.08 and 0.11 If accurate photom…
A giant exoplanet orbiting a very-low-mass star challenges planet formation models
2019
Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts con…
A dust-enshrouded tidal disruption event with a resolved radio jet in a galaxy merger
2018
Tidal disruption events (TDEs) are transient flares produced when a star is ripped apart by the gravitational field of a supermassive black hole (SMBH). We have observed a transient source in the western nucleus of the merging galaxy pair Arp 299 that radiated >1.5 × 10 erg at infrared and radio wavelengths but was not luminous at optical or x-ray wavelengths. We interpret this as a TDE with much of its emission reradiated at infrared wavelengths by dust. Efficient reprocessing by dense gas and dust may explain the difference between theoretical predictions and observed luminosities of TDEs. The radio observations resolve an expanding and decelerating jet, probing the jet formation and evol…
IceCube Search for High-Energy Neutrino Emission from TeV Pulsar Wind Nebulae
2020
Pulsar wind nebulae (PWNe) are the main gamma-ray emitters in the Galactic plane. They are diffuse nebulae that emit nonthermal radiation. Pulsar winds, relativistic magnetized outflows from the central star, shocked in the ambient medium produce a multiwavelength emission from the radio through gamma-rays. Although the leptonic scenario is able to explain most PWNe emission, a hadronic contribution cannot be excluded. A possible hadronic contribution to the high-energy gamma-ray emission inevitably leads to the production of neutrinos. Using 9.5 yr of all-sky IceCube data, we report results from a stacking analysis to search for neutrino emission from 35 PWNe that are high-energy gamma-ray…
Mapping land surface emissivity from NDVI: Application to European, African, and South American areas
1996
Thermal infrared emissivity is an important parameter both for surface characterization and for atmospheric correction methods. Mapping the emissivity from satellite data is therefore a very important question to solve. The main problem is the coupling of the temperature and emissivity effects in the thermal radiances. Several methods have been developed to obtain surface emissivity from satellite data. In this way we propose a theoretical model that relates the emissivity to the NDVI (normalized difference vegetation index) of a given surface and explains the experimental behavior observed by van de Griend and Owe. We can use it to obtain the emissivity in any thermal channel, but in this …
Massive Oe/Be stars at low metallicity: Candidate progenitors of long GRBs?
2010
At low metallicity the B-type stars rotate faster than at higher metallicity, typically in the SMC. As a consequence, it was expected a larger number of fast rotators in the SMC than in the Galaxy, in particular more Be/Oe stars. With the ESO-WFI in its slitless mode, the SMC open clusters were examined and an occurence of Be stars 3 to 5 times larger than in the Galaxy was found. The evolution of the angular rotational velocity seems to be the main key on the understanding of the specific behaviour and of the stellar evolution of such stars at different metallicities. With the results of this WFI study and using observational clues on the SMC WR stars and massive stars, as well as the theo…
On the Dependence of Cirrus Parametrizations on the Cloud Origin
2019
<p>Particle size distributions (PSDs) for cirrus clouds are important for both climate models as well as many remote sensing retrieval methods. Therefore, PSD parametrizations are required. This study presents parametrizations of Arctic cirrus PSDs. The dataset used for this purpose originates from balloon-borne measurements carried out during winter above Kiruna (Sweden), i.e. north of the Arctic circle. The observations are sorted into two types of cirrus cloud origin, either in-situ or liquid. The cloud origin describes the formation pathway of the ice particles. At temperatures below −38 °C, ice particles form in-situ from solution or ice nuclea…
Flares from small to large: X-ray spectroscopy of Proxima Centauri with XMM-Newton
2003
(Abridged) We report results from a comprehensive study of the nearby M dwarf Proxima Centauri with the XMM-Newton satellite. We find strongly variable coronal X-ray emission, with flares ranging over a factor of 100 in peak flux. The low-level emission is found to be continuously variable. Several weak flares are characteristically preceded by an optical burst, compatible with predictions from standard solar flare models. We propose that the U band bursts are proxies for the elusive stellar non-thermal hard X-ray bursts suggested from solar observations. A very large X-ray flare was observed in its entirety, with a peak luminosity of 3.9E28 erg/s [0.15-10 keV] and a total X-ray energy of 1…