Search results for "Gamma-ray burst"
showing 10 items of 132 documents
The readout system and the trigger algorithm implementation for the UFFO Pathfinder
2012
Since the launch of the SWIFT, Gamma-Ray Bursts (GRBs) science has been much progressed. Especially supporting many measurements of GRB events and sharing them with other telescopes by the Gamma-ray Coordinate Network (GCN) have resulted the richness of GRB events, however, only a few of GRB events have been measured within a minute after the gamma ray signal. This lack of sub-minute data limits the study for the characteristics of the UV-optical light curve of the short-hard type GRB and the fast-rising GRB. Therefore, we have developed the telescope named the Ultra-Fast Flash Observatory (UFFO) Pathfinder, to take the sub-minute data for the early photons from GRB. The UFFO Pathfinder has…
EDGE: explorer of diffuse emission and gamma-ray burst explosions
2009
How structures on various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysical cosmology. EDGE will trace the cosmic history of the baryons from the early generations of massive star by Gamma-Ray Burst (GRB) explosions, through the period of cluster formation, down to very low redshifts, when between a third and one half of the baryons are expected to reside in cosmic filaments undergoing gravitational collapse by dark matter (Warm Hot Intragalactic Medium: WHIM). In addition EDGE, with its unprecedented observational capabilities, will provide key results on several other topics. The science is feasible with a medium class mission …
Early warning for VHE gamma-ray flares with the ARGO-YBJ detector
2011
Detecting and monitoring emissions from flaring gamma-ray sources in the very-high-energy (VHE, > 100 GeV) band is a very important topic in gamma-ray astronomy. The ARGO-YBJ detector is characterized by a high duty cycle and a wide field of view. Therefore, it is particularly capable of detecting flares from extragalactic objects. Based on fast reconstruction and analysis, real-time monitoring of 33 selected VHE extragalactic sources is implemented. Flares exceeding a specific threshold are reported timely, hence enabling the follow-up observation of these objects using more sensitive detectors, such as Cherenkov telescopes. (C) 2011 Elsevier B.V. All rights reserved.
The LOFT mission concept: a status update
2016
The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, >8m2 effective area, 2-30 keV, 240 eV spectral resolut…
Borexino’s search for low-energy neutrino and antineutrino signals correlated with gamma-ray bursts
2017
International audience; A search for neutrino and antineutrino events correlated with 2350 gamma-ray bursts (GRBs) is performed with Borexino data collected between December 2007 and November 2015. No statistically significant excess over background is observed. We look for electron antineutrinos ( ν¯e ) that inverse beta decay on protons with energies from 1.8 MeV to 15 MeV and set the best limit on the neutrino fluence from GRBs below 8 MeV. The signals from neutrinos and antineutrinos from GRBs that scatter on electrons are also searched for, a detection channel made possible by the particularly radio-pure scintillator of Borexino. We obtain currently the best limits on the neutrino f…
Observatory science with eXTP
2019
Disponible preprint en: arXiv:1812.04023v1 [astro-ph.HE] [v1] Mon, 10 Dec 2018 19:00:52 UTC (4,376 KB)
Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3a
2022
Abbott, R., et al. (LIGO and VIRGO Collaboration)
GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral
2017
On August 17, 2017 at 12-41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×104 years. We infer the component masses of the binary to be between 0.86 and 2.26 M, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M, with the total mass of the system 2.74-0.01+0.04M. The source was localized within a sky region of 28 deg2 (90% probabili…
A Decade of GRB Follow-Up by BOOTES in Spain (2003–2013)
2016
This article covers ten years of GRB follow-ups by the Spanish BOOTES stations: 71 follow-ups providing 23 detections. Follow-ups by BOOTES-1B from 2005 to 2008 were given in a previous article and are here reviewed and updated, and additional detection data points are included as the former article merely stated their existence. The all-sky cameras CASSANDRA have not yet detected any GRB optical afterglows, but limits are reported where available.
Three-dimensional core-collapse supernovae with complex magnetic structures: I. Explosion dynamics
2021
Magnetic fields can play a major role in the dynamics of outstanding explosions associated to violent events such as GRBs and hypernovae, since they provide a natural mechanism to harness the rotational energy of the central proto-neutron star and power relativistic jets through the stellar progenitor. As the structure of such fields is quite uncertain, most numerical models of MHD-driven core-collapse supernovae consider an aligned dipole as initial magnetic field, while the field's morphology can actually be much more complex. We present three-dimensional simulations of core-collapse supernovae with more realistic magnetic structures, such as quadrupolar fields and, for the first time, an…