Search results for "Gaussian process"

showing 10 items of 128 documents

Gaussian and non-Gaussian stochastic sensitivity analysis of discrete structural systems

2000

Abstract The derivatives of the response of a structural system with respect to the system parameters are termed sensitivities. They play an important role in assessing the effect of uncertainties in the mathematical model of the system and in predicting changes of the response due to changes of the design parameters. In this paper, a time domain approach for evaluating the sensitivity of discrete structural systems to deterministic, as well as to Gaussian or non-Gaussian stochastic input is presented. In particular, in the latter case, the stochastic input has been assumed to be a delta-correlated process and, by using Kronecker algebra extensively, cumulant sensitivities of order higher t…

Differential equationStochastic processGaussianMechanical EngineeringStructural systemstochastic analysisComputer Science Applications1707 Computer Vision and Pattern RecognitionComputer Science Applicationssymbols.namesakeControl theoryKronecker deltaModeling and SimulationsymbolsApplied mathematicsGeneral Materials ScienceSensitivity (control systems)Time domainMaterials Science (all)Sensitivity analysis; stochastic analysis; Non-Gaussian stochastic analysisSensitivity analysisGaussian processNon-Gaussian stochastic analysisMathematicsCivil and Structural Engineering
researchProduct

Il Filtro Integrale Auto-Regressivo Continuo (I-ARC) per l’Analisi di Strutture Esposte al Vento

2010

In questo studio viene proposto un metodo per la rappresentazione di processi aleatori Gaussiani e stazionari, utile a modellare la turbolenza della velocità del vento, introducendo la versione integrale del modello auto-regressivo discreto già proposto in precedenza. La rappresentazione di un processo aleatorio di assegnata funzione di correlazione viene condotta integrando un’equazione integro-differenziale in cui viene coinvolto un nucleo, che rappresenta la memoria del processo, in presenza di un rumore bianco Gaussiano. La soluzione dell’equazione rappresenta un campione del processo aleatorio della turbolenza della velocità del vento. E’ stato mostrato che il modello I-ARC fornisce, n…

Digital simulation Autoregressive-Continuous Filters Gaussian Processes Stochastic Differential Calculus.Settore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Random analysis of geometrically non-linear FE modelled structures under seismic actions

1990

Abstract In the framework of the finite element (FE) method, by using the “total Lagrangian approach”, the stochastic analysis of geometrically non-linear structures subjected to seismic inputs is performed. For this purpose the equations of motion are written with the non-linear contribution in an explicit representation, as pseudo-forces, and with the ground motion modelled as a filtered non-stationary white noise Gaussian process, using a Tajimi-Kanai-like filter. Then equations for the moments of the response are obtained by extending the classical Ito's rule to vectors of random processes. The equations of motion, and the equations for moments, obtained here, show a perfect formal simi…

Discrete mathematicsHermite polynomialsSimilarity (geometry)Random excitation; non-linear structuresStochastic processMathematical analysisEquations of motionBuilding and ConstructionWhite noiseFinite element methodRandom excitationNonlinear systemsymbols.namesakesymbolsnon-linear structuresSafety Risk Reliability and QualityGaussian processCivil and Structural EngineeringMathematics
researchProduct

A Survey of Active Learning for Quantifying Vegetation Traits from Terrestrial Earth Observation Data

2021

The current exponential increase of spatiotemporally explicit data streams from satellite-based Earth observation missions offers promising opportunities for global vegetation monitoring. Intelligent sampling through active learning (AL) heuristics provides a pathway for fast inference of essential vegetation variables by means of hybrid retrieval approaches, i.e., machine learning regression algorithms trained by radiative transfer model (RTM) simulations. In this study we summarize AL theory and perform a brief systematic literature survey about AL heuristics used in the context of Earth observation regression problems over terrestrial targets. Across all relevant studies it appeared that…

Earth observation010504 meteorology & atmospheric sciencesComputer scienceActive learning (machine learning)Science0211 other engineering and technologiesEnMAP02 engineering and technologycomputer.software_genre01 natural sciencesKriging021101 geological & geomatics engineering0105 earth and related environmental sciencesData processingData stream miningQSampling (statistics)15. Life on landquery strategieshyperspectraloptimal experimental designGeneral Earth and Planetary SciencesData miningHeuristicsLiterature surveycomputerGaussian process regressionRemote Sensing
researchProduct

A Survey on Gaussian Processes for Earth-Observation Data Analysis: A Comprehensive Investigation

2016

Gaussian processes (GPs) have experienced tremendous success in biogeophysical parameter retrieval in the last few years. GPs constitute a solid Bayesian framework to consistently formulate many function approximation problems. This article reviews the main theoretical GP developments in the field, considering new algorithms that respect signal and noise characteristics, extract knowledge via automatic relevance kernels to yield feature rankings automatically, and allow applicability of associated uncertainty intervals to transport GP models in space and time that can be used to uncover causal relations between variables and can encode physically meaningful prior knowledge via radiative tra…

Earth observation010504 meteorology & atmospheric sciencesGeneral Computer Science0211 other engineering and technologies02 engineering and technologycomputer.software_genre01 natural sciencesField (computer science)Kernel (linear algebra)symbols.namesakeAtmospheric radiative transfer codesElectrical and Electronic EngineeringInstrumentationGaussian process021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingbusiness.industryHyperspectral imagingFunction approximationsymbolsGlobal Positioning SystemGeneral Earth and Planetary SciencesData miningbusinesscomputerIEEE Geoscience and Remote Sensing Magazine
researchProduct

Latent force models for earth observation time series prediction

2016

We introduce latent force models for Earth observation time series analysis. The model uses Gaussian processes and differential equations to combine data driven modelling with a physical model of the system. The LFM presented here performs multi-output structured regression, adapts to the signal characteristics, it can cope with missing data in the time series, and provides explicit latent functions that allow system analysis and evaluation. We successfully illustrate the performance in challenging scenarios of crop monitoring from space, providing time-resolved time series predictions.

Earth observation010504 meteorology & atmospheric sciencesSeries (mathematics)Differential equationComputer scienceMatemáticas02 engineering and technologyMissing data01 natural sciencesData-drivenData modelingsymbols.namesake0202 electrical engineering electronic engineering information engineeringsymbols020201 artificial intelligence & image processingGeologíaTime seriesGaussian processAlgorithmSimulation0105 earth and related environmental sciences
researchProduct

Statistical biophysical parameter retrieval and emulation with Gaussian processes

2019

Abstract Earth observation from satellites poses challenging problems where machine learning is being widely adopted as a key player. Perhaps the most challenging scenario that we are facing nowadays is to provide accurate estimates of particular variables of interest characterizing the Earth's surface. This chapter introduces some recent advances in statistical bio-geophysical parameter retrieval from satellite data. In particular, we will focus on Gaussian process regression (GPR) that has excelled in parameter estimation as well as in modeling complex radiative transfer processes. GPR is based on solid Bayesian statistics and generally yields efficient and accurate parameter estimates, a…

Earth observationEmulationComputer scienceEstimation theorycomputer.software_genreField (computer science)Bayesian statisticssymbols.namesakeKrigingsymbolsData miningcomputerGaussian processInterpolation
researchProduct

Green LAI Mapping and Cloud Gap-Filling Using Gaussian Process Regression in Google Earth Engine

2021

For the last decade, Gaussian process regression (GPR) proved to be a competitive machine learning regression algorithm for Earth observation applications, with attractive unique properties such as band relevance ranking and uncertainty estimates. More recently, GPR also proved to be a proficient time series processor to fill up gaps in optical imagery, typically due to cloud cover. This makes GPR perfectly suited for large-scale spatiotemporal processing of satellite imageries into cloud-free products of biophysical variables. With the advent of the Google Earth Engine (GEE) cloud platform, new opportunities emerged to process local-to-planetary scale satellite data using advanced machine …

Earth observationGoogle Earth Engine (GEE); Gaussian process regression (GPR); machine learning; Sentinel-2; gap filling; leaf area index (LAI)010504 meteorology & atmospheric sciencesComputer scienceScienceleaf area index (LAI)0211 other engineering and technologiesCloud computing02 engineering and technologycomputer.software_genre01 natural sciencesKrigingGaussian process regression (GPR)021101 geological & geomatics engineering0105 earth and related environmental sciencesPixelbusiness.industryQGoogle Earth Engine (GEE)machine learningKernel (image processing)Ground-penetrating radarGeneral Earth and Planetary SciencesData miningSentinel-2Scale (map)businesscomputergap fillingLevel of detailRemote Sensing; Volume 13; Issue 3; Pages: 403
researchProduct

Systematic Assessment of MODTRAN Emulators for Atmospheric Correction

2021

Atmospheric radiative transfer models (RTMs) simulate the light propagation in the Earth's atmosphere. With the evolution of RTMs, their increase in complexity makes them impractical in routine processing such as atmospheric correction. To overcome their computational burden, standard practice is to interpolate a multidimensional lookup table (LUT) of prestored simulations. However, accurate interpolation relies on large LUTs, which still implies large computation times for their generation and interpolation. In recent years, emulation has been proposed as an alternative to LUT interpolation. Emulation approximates the RTM outputs by a statistical regression model trained with a low number …

EmulationMODTRANComputer scienceDimensionality reduction0211 other engineering and technologiesAtmospheric correction02 engineering and technologyArticlesymbols.namesakePrincipal component analysisLookup tablesymbolsGeneral Earth and Planetary SciencesElectrical and Electronic EngineeringGaussian processAlgorithm021101 geological & geomatics engineeringInterpolation
researchProduct

Spectral band selection for vegetation properties retrieval using Gaussian processes regression

2020

Abstract With current and upcoming imaging spectrometers, automated band analysis techniques are needed to enable efficient identification of most informative bands to facilitate optimized processing of spectral data into estimates of biophysical variables. This paper introduces an automated spectral band analysis tool (BAT) based on Gaussian processes regression (GPR) for the spectral analysis of vegetation properties. The GPR-BAT procedure sequentially backwards removes the least contributing band in the regression model for a given variable until only one band is kept. GPR-BAT is implemented within the framework of the free ARTMO's MLRA (machine learning regression algorithms) toolbox, w…

FOS: Computer and information sciences010504 meteorology & atmospheric sciencesComputer Vision and Pattern Recognition (cs.CV)0211 other engineering and technologiesComputer Science - Computer Vision and Pattern Recognition02 engineering and technologyManagement Monitoring Policy and Law01 natural sciencesStatistics - Applicationssymbols.namesakeFOS: Electrical engineering electronic engineering information engineeringApplications (stat.AP)Computers in Earth SciencesGaussian processHyMap021101 geological & geomatics engineering0105 earth and related environmental sciencesEarth-Surface ProcessesRemote sensingGlobal and Planetary ChangeImage and Video Processing (eess.IV)Hyperspectral imagingRegression analysisVegetationSpectral bands15. Life on landElectrical Engineering and Systems Science - Image and Video ProcessingRegressionGeographyGround-penetrating radarsymbolsInternational Journal of Applied Earth Observation and Geoinformation
researchProduct