Search results for "General Computer Science"
showing 10 items of 895 documents
Locality of order-invariant first-order formulas
2000
A query is local if the decision of whether a tuple in a structure satisfies this query only depends on a small neighborhood of the tuple. We prove that all queries expressible by order-invariant first-order formulas are local.
Two-Variable First-Order Logic with Equivalence Closure
2012
We consider the satisfiability and finite satisfiability problems for extensions of the two-variable fragment of first-order logic in which an equivalence closure operator can be applied to a fixed number of binary predicates. We show that the satisfiability problem for two-variable, first-order logic with equivalence closure applied to two binary predicates is in 2-NExpTime, and we obtain a matching lower bound by showing that the satisfiability problem for two-variable first-order logic in the presence of two equivalence relations is 2-NExpTime-hard. The logics in question lack the finite model property; however, we show that the same complexity bounds hold for the corresponding finite sa…
A Note on the Measure of Solvability
2004
Machine-Independent Characterizations and Complete Problems for Deterministic Linear Time
2002
This article presents two algebraic characterizations and two related complete problems for the complexity class DLIN that was introduced in [E. Grandjean, Ann. Math. Artif. Intell., 16 (1996), pp. 183--236]. DLIN is essentially the class of all functions that can be computed in linear time on a Random Access Machine which uses only numbers of linear value during its computations. The algebraic characterizations are in terms of recursion schemes that define unary functions. One of these schemes defines several functions simultaneously, while the other one defines only one function. From the algebraic characterizations, we derive two complete problems for DLIN under new, very strict, and mac…
On the hardness of optimization in power-law graphs
2008
Our motivation for this work is the remarkable discovery that many large-scale real-world graphs ranging from Internet and World Wide Web to social and biological networks appear to exhibit a power-law distribution: the number of nodes y"i of a given degree i is proportional to i^-^@b where @b>0 is a constant that depends on the application domain. There is practical evidence that combinatorial optimization in power-law graphs is easier than in general graphs, prompting the basic theoretical question: Is combinatorial optimization in power-law graphs easy? Does the answer depend on the power-law exponent @b? Our main result is the proof that many classical NP-hard graph-theoretic optimizati…
A comparison of compatible, finite, and inductive graph properties
1993
Abstract In the theory of hyperedge-replacement grammars and languages, one encounters three types of graph properties that play an important role in proving decidability and structural results. The three types are called compatible, finite, and inductive graph properties. All three of them cover graph properties that are well-behaved with respect to certain operations on hypergraphs. In this paper, we show that the three notions are essentially equivalent. Consequently, three lines of investigation in the theory of hyperedge replacement - so far separated - merge into one.
Bounds for minimum feedback vertex sets in distance graphs and circulant graphs
2008
Graphs and Algorithms
The computational complexity of the relative robust shortest path problem with interval data
2004
Abstract The paper deals with the relative robust shortest path problem in a directed arc weighted graph, where arc lengths are specified as intervals containing possible realizations of arc lengths. The complexity status of this problem has been unknown in the literature. We show that the problem is NP -hard.
The computational complexity of the criticality problems in a network with interval activity times
2002
Abstract The paper analyzes the criticality in a network with interval activities duration times. A natural generalization of the criticality notion (for a path, an activity and an event) for the case of network with interval activity duration times is given. The computation complexity of five problems linked to the introduced criticality notion is presented.
On the low-dimensional Steiner minimum tree problem in Hamming metric
2013
While it is known that the d-dimensional Steiner minimum tree problem in Hamming metric is NP-complete if d is part of the input, it is an open question whether this also holds for fixed dimensions. In this paper, this question is answered by showing that the Steiner minimum tree problem in Hamming metric is already NP-complete in 3 dimensions. Furthermore, we show that, the minimum spanning tree gives a 2-2d approximation on the Steiner minimum tree for d>=2. Using this result, we analyse the so-called k-LCA and A"k approximation algorithms and show improved approximation guarantees for low dimensions.