Search results for "General relativity"
showing 10 items of 1057 documents
Black Holes, Geons, and Singularities in Metric-Affine Gravity
2016
Uno de los problemas abiertos en la descripción de la gravedad es la existencia de singularidades. Las geometrías singulares se caracterizan por geodésicas incompletas, lo que físicamente se corresponde con observadores que desaparecen del espacio-tiempo, o que aparecen de la nada. Múltiples extensiones de la Relatividad General tratan de resolver este problema de algún modo. Por ello, en esta tesis estudio modificaciones al Lagrangiano de Relatividad General, tales como gravedad cuadrática y gravedad de Born-Infeld, en el formalismo Métrico-Afín. En este formalismo, la conexión (de la cual se derivan los tensores de curvatura) se considera independiente de la métrica, y permitimos que sea …
Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs
2021
We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called {\tt PyStoch} on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found eviden…
Testing effects of Lorentz invariance violation in the propagation of astroparticles with the Pierre Auger Observatory
2021
The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support: Argentina — Comisión Nacional de Energía Atómica; Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Gobierno de la Provincia de Mendoza; Municipalidad de Malargüe; NDM Holdings and Valle Las Leñas; in gratitude for their continuing cooperation over land access; Australia — the Australian Research Council; Be…
An Exact Solution for the Level-Crossing Rate and the Average Duration of Fades of the Envelope of Sum-of-Cisoids Processes
2012
Authors version of an article published in the journal: Procedia Technology. Also available from the publisher at: http://dx.doi.org/10.1016/j.protcy.2012.03.004 Sum-of-cisoids (SOC) processes provide a physically and numerically appealing framework for the modelling and simulation of a wide class of mobile radio channels. This paper is concerned with the problem of finding a general solution for the level-crossing rate (LCR) and the average duration of fades (ADF) of the envelope of SOC processes. Exact expressions are derived for the LCR and the ADF by taking into account that the inphase component, the quadrature component, and the time derivatives of the inphase and quadrature component…
Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog
2021
Abbott, R., et al. (LIGO and Virgo Collaboration)
Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light
2019
Current interferometric gravitational-wave detectors are limited by quantum noise over a wide range of their measurement bandwidth. One method to overcome the quantum limit is the injection of squeezed vacuum states of light into the interferometer's dark port. Here, we report on the successful application of this quantum technology to improve the shot noise limited sensitivity of the Advanced Virgo gravitational-wave detector. A sensitivity enhancement of up to 3.2±0.1 dB beyond the shot noise limit is achieved. This nonclassical improvement corresponds to a 5%-8% increase of the binary neutron star horizon. The squeezing injection was fully automated and over the first 5 months of the thi…
Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3a
2022
Abbott, R., et al. (LIGO and VIRGO Collaboration)
The advanced Virgo longitudinal control system for the O2 observing run
2020
Following a successful period of data-taking between 2006 and 2011, the Virgo gravitational-wave detector was taken offline for a major upgrade. The changes made to the instrument significantly increased the complexity of the control systems and meant that an extended period of commissioning was required to reach a sensitivity appropriate for science data-taking. This commissioning period was completed in July of 2017 and the second-generation Advanced Virgo detector went on to join the Advanced LIGO detectors in the O2 science run in August of the same year. The upgraded detector was approximately twice as sensitive to binary neutron star mergers as the first-generation instrument. During …
GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral
2017
On August 17, 2017 at 12-41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×104 years. We infer the component masses of the binary to be between 0.86 and 2.26 M, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M, with the total mass of the system 2.74-0.01+0.04M. The source was localized within a sky region of 28 deg2 (90% probabili…
Inference of proto-neutron star properties from gravitational-wave data in core-collapse supernovae
2021
The eventual detection of gravitational waves from core-collapse supernovae (CCSN) will help improve our current understanding of the explosion mechanism of massive stars. The stochastic nature of the late post-bounce gravitational wave signal due to the non-linear dynamics of the matter involved and the large number of degrees of freedom of the phenomenon make the source parameter inference problem very challenging. In this paper we take a step towards that goal and present a parameter estimation approach which is based on the gravitational waves associated with oscillations of proto-neutron stars (PNS). Numerical simulations of CCSN have shown that buoyancy-driven g-modes are responsible …