Search results for "Genetically Modified"

showing 10 items of 345 documents

A plant genetically modified that accumulates Pb is especially promising for phytoremediation

2003

6 pages, 3 figures, 1 table.

AgrobacteriumBiophysicsPlant RootsBiochemistryHyperaccumulatorsBioremediationMetals HeavyTobaccoBotanyNicotiana glaucaHyperaccumulatorMolecular BiologyGlucuronidaseNicotianabiologyfungiWild typefood and beveragesBiological TransportCell BiologyPlants Genetically Modifiedbiology.organism_classificationRecombinant ProteinsGenetically modified organismPhytoremediationBiodegradation EnvironmentalLeadSeedlingPhytochelatin synthaseBioremediationCadmium
researchProduct

Overexpression of human hepatic lipase and ApoE in transgenic rabbits attenuates response to dietary cholesterol and alters lipoprotein subclass dist…

1999

Abstract —The effect of the expression of human hepatic lipase (HL) or human apoE on plasma lipoproteins in transgenic rabbits in response to dietary cholesterol was compared with the response of nontransgenic control rabbits. Supplementation of a chow diet with 0.3% cholesterol and 3.0% soybean oil for 10 weeks resulted in markedly increased levels of plasma cholesterol and VLDL and IDL in control rabbits as expected. Expression of either HL or apoE reduced plasma cholesterol response by 75% and 60%, respectively. The HL transgenic rabbits had substantial reductions in medium and small VLDL and IDL fractions but not in larger VLDL. LDL levels were also reduced, with a shift from larger, m…

Apolipoprotein EMalemedicine.medical_specialtyVery low-density lipoproteinTransgeneLipoproteinsCholesterol VLDLHypercholesterolemiaGene ExpressionPathogenesisAnimals Genetically ModifiedCholesterol Dietarychemistry.chemical_compoundApolipoproteins EInternal medicinemedicineAnimalsHumansTransgenesParticle SizeApolipoproteins BLagomorphabiologyCholesterolCholesterol HDLLipasebiology.organism_classificationEndocrinologyCholesterolchemistrylipoproteins apoE hepatic lipase rabbits transgeneLiverDiet Atherogeniclipids (amino acids peptides and proteins)Hepatic lipaseRabbitsCardiology and Cardiovascular MedicineLipoproteinArteriosclerosis, thrombosis, and vascular biology
researchProduct

The matricellular protein SPARC supports follicular dendritic cell networking toward Th17 responses.

2011

Abstract Lymphnode swelling during immune responses is a transient, finely regulated tissue rearrangement, accomplished with the participation of the extracellular matrix. Here we show that murine and human reactive lymph nodes express SPARC in the germinal centres. Defective follicular dendritic cell networking in SPARC-deficient mice is accompanied by a severe delay in the arrangement of germinal centres and development of humoral autoimmunity, events that are linked to Th17 development. SPARC is required for the optimal and rapid differentiation of Th17 cells, accordingly we show delayed development of experimental autoimmune encephalomyelitis whose pathogenesis involves Th17. Not only h…

Autoimmune diseases; Extracellular matrix; Germinal centre reaction; Th17 cellsEncephalomyelitis Autoimmune ExperimentalMultiple SclerosisImmunologyCell CommunicationBiologyfollicular dendritic cellExtracellular matrixAnimals Genetically ModifiedMiceImmune systemSPARC; follicular dendritic cell; Th17Autoimmune diseasemedicinegerminal centre reactionImmunology and AllergyAnimalsHumansautoimmune diseasesOsteonectinMice KnockoutB-LymphocytesCD40Follicular dendritic cellsExperimental autoimmune encephalomyelitisMatricellular proteinGerminal centerSPARCCell Differentiationmedicine.diseaseCell biologyExtracellular MatrixImmunity HumoralMice Inbred C57BLCrosstalk (biology)Disease Models AnimalImmunologybiology.proteinDisease ProgressionTh17 CellsImmunizationMyelin-Oligodendrocyte GlycoproteinTh17autoimmune diseases; extracellular matrix; germinal centre reaction; th17 cellsDendritic Cells FollicularMyelin ProteinsJournal of autoimmunity
researchProduct

Integrative Model for Binding of Bacillus thuringiensis Toxins in Susceptible and Resistant Larvae of the Diamondback Moth (Plutella xylostella)

1999

ABSTRACT Insecticidal crystal proteins from Bacillus thuringiensis in sprays and transgenic crops are extremely useful for environmentally sound pest management, but their long-term efficacy is threatened by evolution of resistance by target pests. The diamondback moth ( Plutella xylostella ) is the first insect to evolve resistance to B. thuringiensis in open-field populations. The only known mechanism of resistance to B. thuringiensis in the diamondback moth is reduced binding of toxin to midgut binding sites. In the present work we analyzed competitive binding of B. thuringiensis toxins Cry1Aa, Cry1Ab, Cry1Ac, and Cry1F to brush border membrane vesicles from larval midguts in a susceptib…

Bacterial ToxinsBacillus thuringiensisGenetically modified cropsMothsApplied Microbiology and BiotechnologyBinding CompetitiveModels BiologicalHemolysin ProteinsBacterial ProteinsBacillus thuringiensisBotanyInvertebrate MicrobiologyAnimalsBinding sitePest Control BiologicalGeneticsBacillaceaeDiamondback mothBinding SitesEcologybiologyBacillus thuringiensis ToxinsParasporal bodyfungiPlutellafood and beveragesbiology.organism_classificationEndotoxinsCry1AcLarvaFood ScienceBiotechnology
researchProduct

Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie).

2007

ABSTRACT Laboratory-selected Bacillus thuringiensis -resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea , a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficult to select for stable resistance. Two populations of H. zea (AR and MR), resistant to the B. thuringiensis protein found in all commercial Bt cotton varieties (Cry1Ac), were established by selection with Cry1Ac activated toxin (AR) or MVP II (MR). Cry1Ac toxin reflects the form ingested by H. zea when feeding on Bt cotton, whereas MVP II is a Cry1Ac formulation used for resistance se…

Bacterial ToxinsBacillus thuringiensisMothsGossypiumApplied Microbiology and BiotechnologyCypermethrinInsecticide Resistancechemistry.chemical_compoundHemolysin ProteinsBacterial ProteinsBacillus thuringiensisInvertebrate MicrobiologyAnimalsPest Control BiologicalGossypiumGenetically modified maizeEcologybiologyBacillus thuringiensis Toxinsfungifood and beveragesbiology.organism_classificationPlants Genetically ModifiedEndotoxinsHorticulturechemistryAgronomyCry1AcBt cottonHelicoverpa zeaPEST analysisFood ScienceBiotechnologyProtein BindingApplied and environmental microbiology
researchProduct

Genetic variability of Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) populations from Latin America is associated with variations in susceptib…

2006

ABSTRACT Bacillus thuringiensis strains isolated from Latin American soil samples that showed toxicity against three Spodoptera frugiperda populations from different geographical areas (Mexico, Colombia, and Brazil) were characterized on the basis of their insecticidal activity, crystal morphology, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of parasporal crystals, plasmid profiles, and cry gene content. We found that the different S. frugiperda populations display different susceptibilities to the selected B. thuringiensis strains and also to pure preparations of Cry1B, Cry1C, and Cry1D toxins. Binding assays performed with pure toxin demonstrated that the differences in the …

Bacterial ToxinsBacillus thuringiensisSpodopteraSpodopteraApplied Microbiology and BiotechnologyPolymerase Chain ReactionLepidoptera genitaliaHemolysin ProteinsBacterial ProteinsBacillus thuringiensisGenetic variationparasitic diseasesInvertebrate MicrobiologyAnimalsGenetic variabilityPest Control BiologicalSoil MicrobiologyGeneticsGenetic diversityGenetically modified maizeEcologybiologyBacillus thuringiensis ToxinsMicrovillibusiness.industryfungiGenetic Variationbiology.organism_classificationBiotechnologyRandom Amplified Polymorphic DNA TechniqueEndotoxinsLatin AmericaNoctuidaebusinessFood ScienceBiotechnologyApplied and environmental microbiology
researchProduct

Interaction of Bacillus thuringiensis Toxins with Larval Midgut Binding Sites of Helicoverpa armigera (Lepidoptera: Noctuidae)

2004

ABSTRACT In 1996, Bt-cotton (cotton expressing a Bacillus thuringiensis toxin gene) expressing the Cry1Ac protein was commercially introduced to control cotton pests. A threat to this first generation of transgenic cotton is the evolution of resistance by the insects. Second-generation Bt-cotton has been developed with either new B. thuringiensis genes or with a combination of cry genes. However, one requirement for the “stacked” gene strategy to work is that the stacked toxins bind to different binding sites. In the present study, the binding of 125 I-labeled Cry1Ab protein ( 125 I-Cry1Ab) and 125 I-Cry1Ac to brush border membrane vesicles (BBMV) of Helicoverpa armigera was analyzed in com…

Bacterial ToxinsPopulationBacillus thuringiensisCarbohydratesDrug ResistanceHelicoverpa armigeraModels BiologicalApplied Microbiology and BiotechnologyMicrobiologyHemolysin Proteinschemistry.chemical_compoundBacterial ProteinsLectinsBacillus thuringiensisInvertebrate MicrobiologyAnimalsBinding siteSoybean agglutininPest Control BiologicaleducationGossypiumeducation.field_of_studyBinding SitesBacillus thuringiensis ToxinsEcologybiologyfungifood and beveragesPlants Genetically Modifiedbiology.organism_classificationSialic acidEndotoxinsLepidopteraKineticsCry1AcchemistryBiochemistryGenes BacterialLarvaNoctuidaeDigestive SystemFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct

High Genetic Variability for Resistance to Bacillus thuringiensis Toxins in a Single Population of Diamondback Moth

2001

ABSTRACT The long-term benefit of insecticidal products based on Cry toxins, either in sprays or as transgenic crops, is threatened by the development of resistance by target pests. The models used to predict evolution of resistance to Cry toxins most often are monogenic models in which two alleles are used. Moreover, the high-dose/refuge strategy recommended for implementation with transgenic crops relies on the assumption that the resistance allele is recessive. Using selection experiments, we demonstrated the occurrence in a laboratory colony of diamondback moth of two different genes (either allelic or nonallelic) that confer resistance to Cry1Ab. At the concentration tested, resistance…

Bacterial ToxinsPopulationBacillus thuringiensisGenes InsectGenetically modified cropsMothsBiologyApplied Microbiology and BiotechnologyInsecticide ResistanceHemolysin ProteinsBacterial ProteinsBacillus thuringiensisGenetic variationBotanyInvertebrate MicrobiologyAnimalsGenetic variabilitySelection GeneticAllelePest Control BiologicaleducationGeneGeneticseducation.field_of_studyDiamondback mothBacillus thuringiensis ToxinsEcologyfungiGenetic Variationbiology.organism_classificationEndotoxinsFood ScienceBiotechnology
researchProduct

Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis

1997

Insecticidal proteins from the soil bacterium Bacillus thuringiensis (Bt) are becoming a cornerstone of ecologically sound pest management. However, if pests quickly adapt, the benefits of environmentally benign Bt toxins in sprays and genetically engineered crops will be short-lived. The diamondback moth ( Plutella xylostella ) is the first insect to evolve resistance to Bt in open-field populations. Here we report that populations from Hawaii and Pennsylvania share a genetic locus at which a recessive mutation associated with reduced toxin binding confers extremely high resistance to four Bt toxins. In contrast, resistance in a population from the Philippines shows multilocus control, a …

Bacterial ToxinsPopulationBacillus thuringiensisGenetically modified cropsMothsGenomic ImprintingHemolysin ProteinsBacterial ProteinsBacillus thuringiensisGenetic variationAnimalsAllelePest Control BiologicaleducationGeneticseducation.field_of_studyMultidisciplinaryDiamondback mothBacillus thuringiensis Toxinsbiologybusiness.industryGenetic Complementation TestfungiPest controlfood and beveragesChromosome MappingGenetic VariationPlutellaBiological Sciencesbiology.organism_classificationEndotoxinsFemalebusinessProtein Binding
researchProduct

Generation of lentivirus vectors using recombinant baculoviruses

2008

In spite of advances in conventional four-plasmid transient transfection methods and development of inducible stable production cell lines, production of replication-defective lentiviral vectors in clinical scale has been challenging. Baculovirus technology offers an alternative to scalable virus production as a result of fast and easy production of baculoviruses, efficient transduction of mammalian cells and safety of the baculoviruses. As a first step toward scalable lentiviral production system, we have constructed four recombinant baculoviruses: the BAC-transfer virus expresses green fluorescent protein (GFP) as a transgene and BAC-gag-pol, BAC-vesicular stomatitis virus glycoprotein G …

BaculoviridaevirusesGenetic enhancementGenetic VectorsGreen Fluorescent ProteinsGene ExpressionVirus ReplicationCell LineGreen fluorescent proteinlaw.inventionTransduction (genetics)Transduction GeneticlawVirologyGeneticsHumansTransgenesCloning MolecularMolecular BiologyOrganisms Genetically ModifiedbiologyLentivirusGenetic TherapyFlow Cytometrybiology.organism_classificationVirologyMicroscopy FluorescenceViral replicationCell cultureLentivirusRecombinant DNAMolecular MedicineBaculoviridaeHeLa CellsGene Therapy
researchProduct