Search results for "Genetically Modified"

showing 10 items of 345 documents

Heterodimer formation of wild-type and amyotrophic lateral sclerosis-causing mutant Cu/Zn-superoxide dismutase induces toxicity independent of protei…

2008

Recent studies provide evidence that wild-type Cu/Zn-superoxide dismutase (SOD1(hWT)) might be an important factor in mutant SOD1-mediated amyotrophic lateral sclerosis (ALS). In order to investigate its functional role in the pathogenesis of ALS, we designed fusion proteins of two SOD1 monomers linked by a polypeptide. We demonstrated that wild-type-like mutants, but not SOD1(G85R) homodimers, as well as mutant heterodimers including SOD1(G85R)-SOD1(hWT) display dismutase activity. Mutant homodimers showed an increased aggregation compared with the corresponding heterodimers in cell cultures and transgenic Caenorhabditis elegans, although SOD1(G85R) heterodimers are more toxic in functiona…

Cell SurvivalRecombinant Fusion Proteinsanimal diseasesSOD1MutantProtein aggregationAnimals Genetically ModifiedProtein CarbonylationSuperoxide dismutaseMicechemistry.chemical_compoundSuperoxide Dismutase-1Cell Line TumorGeneticsAnimalsHumansAmino Acid SequenceCaenorhabditis elegansMolecular BiologyGenetics (clinical)Motor NeuronsbiologySuperoxide DismutaseSuperoxideAmyotrophic Lateral SclerosisWild typenutritional and metabolic diseasesHydrogen PeroxideGeneral MedicineFusion proteinProtein Structure Tertiarynervous system diseasesCell biologyAmino Acid Substitutionnervous systemchemistryBiochemistrybiology.proteinDismutaseDimerizationHuman Molecular Genetics
researchProduct

Interactions between Polyamines and Abiotic Stress Pathway Responses Unraveled by Transcriptome Analysis of Polyamine Overproducers

2011

Plant development and productivity are negatively regulated by adverse environmental conditions. The identification of stress-regulatory genes, networks, and signaling molecules should allow the development of novel strategies to obtain tolerant plants. Polyamines (PAs) are polycationic compounds with a recognized role in plant growth and development, as well as in abiotic and biotic stress responses. During the last years, knowledge on PA functions has been achieved using genetically modified plants with altered PA levels. In this review, we combine the information obtained from global transcriptome analyses in transgenic Arabidopsis plants with altered putrescine or spermine levels. Compa…

Cell signalingArabidopsisBiologyModels BiologicalBiochemistryTranscriptomechemistry.chemical_compoundStress PhysiologicalArabidopsisPolyaminesGeneticsPlant defense against herbivoryCalcium SignalingMolecular BiologyAbscisic acidPlant Stress—Special Issue 1Review ArticlesAbiotic stressfungifood and beveragesBiotic stressPlants Genetically Modifiedbiology.organism_classificationchemistryBiochemistryPutrescineMolecular MedicineTranscriptomeGenome PlantAbscisic AcidSignal TransductionBiotechnologyOMICS: A Journal of Integrative Biology
researchProduct

The ladybird homeobox genes are essential for the specification of a subpopulation of neural cells

2004

AbstractIn Drosophila, neurons and glial cells are produced by neural precursor cells called neuroblasts (NBs), which can be individually identified. Each NB generates a characteristic cell lineage specified by a precise spatiotemporal control of gene expression within the NB and its progeny. Here we show that the homeobox genes ladybird early and ladybird late are expressed in subsets of cells deriving from neuroblasts NB 5-3 and NB 5-6 and are essential for their correct development. Our analysis revealed that ladybird in Drosophila, like their vertebrate orthologous Lbx1 genes, play an important role in cell fate specification processes. Among those cells that express ladybird are NB 5-6…

Cellular differentiationApoptosisAnimals Genetically ModifiedNeuroblastPrecursor cellGlial cellsmedicineHomeoboxAnimalsDrosophila ProteinsCell LineageMolecular BiologyBody PatterningGeneticsHomeodomain ProteinsNeuronsbiologyGene Expression Regulation DevelopmentalCell DifferentiationCell Biologybiology.organism_classificationLadybirdCell biologymedicine.anatomical_structureDrosophila melanogasternervous systemVentral nerve cordIdentity specificationHomeoboxNeurogliaDrosophilaDrosophila melanogasterCNSNeurogliaDrosophila ProteinTranscription FactorsDevelopmental BiologyDevelopmental Biology
researchProduct

Spatio-temporal pattern of cells expressing the clock genes period and timeless and the lineages of period expressing neurons in the embryonic CNS of…

2010

The initial steps towards the generation of cell diversity in the central nervous system of the fruitfly Drosophila melanogaster take place during early phases of embryonic development when a stereotypic population of neural progenitor cells (neuroblasts and midline precursors) is formed in a precise spatial and temporal pattern, and subsequently expresses a particular sequence of genes. The clarification of the positional, temporal and molecular features of the individual progenitor cells in the nerve cord and brain as well as of their specific types of neuronal and/or glial progeny cells forms an essential basis to understand the mechanisms controlling their development. The present study…

Central Nervous SystemEmbryo NonmammalianTimelessPeriod (gene)PopulationModels BiologicalAnimals Genetically ModifiedNeuroblastCell MovementGeneticsAnimalsDrosophila ProteinsCell LineageeducationMolecular BiologyBody PatterningGeneticsNeuronseducation.field_of_studyLife Cycle StagesbiologyGene Expression Regulation DevelopmentalPeriod Circadian Proteinsbiology.organism_classificationNeural stem cellCell biologyClone CellsCLOCKDrosophila melanogasterLarvaDrosophila melanogasterNeural developmentDevelopmental BiologyGene expression patterns : GEP
researchProduct

Abdominal-A mediated repression of Cyclin E expression during cell-fate specification in the Drosophila central nervous system

2009

Homeotic/Hox genes are known to specify a given developmental pathway by regulating the expression of downstream effector genes. During embryonic CNS development of Drosophila, the Hox protein Abdominal-A (AbdA) is required for the specification of the abdominal NB6-4 lineage. It does so by down regulating the expression of the cell cycle regulator gene Dcyclin E (CycE). CycE is normally expressed in the thoracic NB6-4 lineage to give rise to mixed lineage of neurons and glia, while only glial cells are produced from the abdominal NB6-4 lineage due to the repression of CycE by AbdA. Here we investigate how AbdA represses the expression of CycE to define the abdominal fate of a single NB6-4 …

Central Nervous SystemEmbryologyTranscription GeneticRegulatorCell fate determinationBiologyAnimals Genetically ModifiedCyclin EAnimalsCell LineageTransgenesEnhancerHox genePsychological repressionIn Situ HybridizationRegulator geneHomeodomain ProteinsNeuronsGene Expression Regulation DevelopmentalCell DifferentiationCell cycleMolecular biologyCell biologyDrosophila melanogasterHomeotic geneNeurogliaDevelopmental BiologyMechanisms of Development
researchProduct

A glial amino-acid transporter controls synapse strength and courtship in Drosophila

2008

1097-6256 (Print) Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't; Mate choice is an evolutionarily critical decision that requires the detection of multiple sex-specific signals followed by central integration of these signals to direct appropriate behavior. The mechanisms controlling mate choice remain poorly understood. Here, we show that the glial amino-acid transporter genderblind controls whether Drosophila melanogaster males will attempt to mate with other males. Genderblind (gb) mutant males showed no alteration in heterosexual courtship or copulation, but were attracted to normally unappealing male species-specific chemosensory cues. As a resul…

Central Nervous SystemMaleNervous systemAmino Acid Transport System y+media_common.quotation_subjectNeuroscience(all)Glutamic AcidArticleAnimals Genetically ModifiedCourtshipSynapseGlutamatergicmedicineAnimalsDrosophila ProteinsRNA Small Interferingmedia_commonBehavior AnimalbiologyGeneral NeuroscienceCourtshipHomosexualitybiology.organism_classificationmedicine.anatomical_structureMate choiceMutationSynapsesGenderblindDrosophilaFemaleGlutamatergic synapseDrosophila melanogaster/dk/atira/pure/subjectarea/asjc/2800NeurogliaNeuroscience
researchProduct

Morphological Characterization of the Entire Interneuron Population Reveals Principles of Neuromere Organization in the Ventral Nerve Cord ofDrosophi…

2011

Decisive contributions to our understanding of the mechanisms underlying the development of the nervous system have been made by studies performed at the level of single, identified cells in the fruit flyDrosophila. While all the motor neurons and glial cells in thoracic and abdominal segments of theDrosophilaembryo have been individually identified, few of the interneurons, which comprise the vast majority of cells in the CNS, have been characterized at this level. We have applied a single cell labeling technique to carry out a detailed morphological characterization of the entire population of interneurons in abdominal segments A1–A7. Based on the definition of a set of spatial parameters…

Central Nervous SystemNervous systemCell typeInterneuronCD8 AntigensGreen Fluorescent ProteinsLIM-Homeodomain ProteinsModels NeurologicalStatistics as TopicPopulationCell CountBiologyFunctional LateralityAnimals Genetically ModifiedInterneuronsNeural PathwaysmedicineAnimalsDrosophila ProteinsAmino Acidseducationeducation.field_of_studyGeneral NeurosciencefungiArticlesNeuromereAxonsmedicine.anatomical_structureVentral nerve cordDrosophilaAxon guidanceNeuroscienceDrosophila ProteinTranscription FactorsThe Journal of Neuroscience
researchProduct

The commonly used marker ELAV is transiently expressed in neuroblasts and glial cells in theDrosophilaembryonic CNS

2007

Glial cells in the Drosophila embryonic nervous system can be monitored with the marker Reversed-polarity (Repo), whereas neurons lack Repo and express the RNA-binding protein ELAV (Embryonic Lethal, Abnormal Vision). Since the first description of the ELAV protein distribution in 1991 (Robinow and White), it is believed that ELAV is an exclusive neuronal and postmitotic marker. Looking at ELAV expression, we unexpectedly observed that, in addition to neurons, ELAV is transiently expressed in embryonic glial cells. Furthermore, it is transiently present in the proliferating longitudinal glioblast, and it is transcribed in embryonic neuroblasts. Likewise, elav-Gal4 lines, which are generally…

Central Nervous SystemNervous systemGenes InsectBiologyAnimals Genetically ModifiedGlioblastNeuroblastGenes ReportermedicineAnimalsDrosophila ProteinsEmbryonic Stem CellsNeuronsRegulation of gene expressionGene Expression Regulation DevelopmentalEmbryoAnatomyEmbryonic stem cellPhenotypeNeural stem cellCell biologyPhenotypemedicine.anatomical_structureELAV Proteinsnervous systemMutationDrosophilaNeurogliaDevelopmental BiologyDevelopmental Dynamics
researchProduct

GAL4-responsive UAS- tau as a tool for studying the anatomy and development of the Drosophila central nervous system

1997

To improve the quality of cytoplasmic labelling of GAL4-expressing cells in Drosophila enhancer-trap and transgenic strains, a new GAL4-responsive reporter UAS-tau, which features a bovine tau cDNA under control of a yeast upstream activation sequence (UAS), was tested. Tau, a microtubule-associated protein, is distributed actively and evenly into all cellular processes. Monoclonal anti-bovine Tau antibody reveals the axonal structure of the labelled cells with detail similar to that of Golgi impregnation. We demonstrate that the UAS-tau system is especially useful for studying processes of differentiation and reorganisation of identified neurones during postembryonic development.

Central Nervous SystemSaccharomyces cerevisiae ProteinsHistologyTransgenetau ProteinsBiologyProteomicsPathology and Forensic MedicineAnimals Genetically ModifiedFungal ProteinsUpstream activating sequenceGenes ReporterComplementary DNAmental disordersAnimalsEnhancer trapGenetic TestingTranscription factorNeuronsRegulation of gene expressionMetamorphosis BiologicalAntibodies MonoclonalGene Expression Regulation DevelopmentalCell BiologyAnatomyDNA-Binding ProteinsEnhancer Elements GeneticCytoplasmCattleDrosophilaTranscription FactorsCell and Tissue Research
researchProduct

Up-regulation of 1-deoxy-D-xylulose-5-phosphate synthase enhances production of essential oils in transgenic spike lavender.

2006

Abstract Spike lavender (Lavandula latifolia) is an aromatic shrub cultivated worldwide for the production of essential oils. The major constituents of these oils are monoterpenes, which are obtained from isopentenyl diphosphate and dimethylallyl diphosphate precursors through the plastidial methylerythritol phosphate (MEP) pathway and/or the cytosolic mevalonate pathway. 1-Deoxy-d-xylulose-5-P synthase (DXS) catalyzes the first step of the MEP pathway. A cDNA coding for the Arabidopsis (Arabidopsis thaliana) DXS was constitutively expressed in spike lavender. Gas chromatography/mass spectrometry analyses revealed that transgenic plants accumulated significantly more essential oils compared…

ChlorophyllPhysiologyTransgeneMolecular Sequence DataLavandula latifoliaPlant ScienceGenetically modified cropslaw.inventionlawGene Expression Regulation PlantTransferasesArabidopsisBotanyGeneticsOils VolatileArabidopsis thalianaEssential oilbiologyATP synthasefood and beveragesbiology.organism_classificationPlants Genetically ModifiedCarotenoidsUp-RegulationPlant LeavesLavandulaBiochemistrybiology.proteinMevalonate pathwayResearch ArticlePlant physiology
researchProduct