Search results for "Genome size"
showing 10 items of 92 documents
Genome size and chromosomes in marine sponges [Suberites domuncula, Geodia cydonium]
1995
The genome size of the marine sponges Suberites domuncula and Geodia cydonium has been determined by flow cytofluorometric analysis using diamidino-phenylindole [DAPI]. Using human lymphocytes as reference the amount of DNA in cells from S. domuncula has been determined to be 3.7 pg and that of G. cydonium 3.3 pg. While no chromosomes could be identified in G. cydonium, the karyotype of the Suberites domuncula is 32 chromosomes in the diploid state. The size of the chromosomes was between 0.25 and 1.0 micron. No pronounced banding pattern was visible.
Mesonia oceanica sp. Nov., isolated from oceans during the tara oceans expedition, with a preference for mesopelagic waters
2020
10 pages, 4 figures, 3 tables
An update on the Symbiotic Genomes Database (SymGenDB): a collection of metadata, genomic, genetic and protein sequences, orthologs and metabolic net…
2020
The Symbiotic Genomes Database (SymGenDB; http://symbiogenomesdb.uv.es/) is a public resource of manually curated associations between organisms involved in symbiotic relationships, maintaining a catalog of completely sequenced/finished bacterial genomes exclusively. It originally consisted of three modules where users could search for the bacteria involved in a specific symbiotic relationship, their genomes and their genes (including their orthologs). In this update, we present an additional module that includes a representation of the metabolic network of each organism included in the database, as Directed Acyclic Graphs (MetaDAGs). This module provides unique opportunities to explore the…
The evolutionary history of symbiotic associations among bacteria and their animal hosts: a model
2009
AbstractA model to explain the evolutionary history of animal-bacteria obligatory mutualistic symbiosis is presented. Dispensability of genes and genetic isolation are key factors in the reduction process of these bacterial genomes. Major steps in such genome reductive evolution, leading towards primary endoslmblosis, and the possibility of complementation or replacement by a secondary symbiont are also indicated. Yet, we need to understand what happens at the beginning of the adaptative process towards an obligate mutualistic relationship. For this purpose, we propose to sequence the complete genome of SOPE, the primary endosymbiont of the rice weevil.
Origin and phylogeography of the Chagas disease main vector Triatoma infestans based on nuclear rDNA sequences and genome size
2004
For about half of all Chagas disease cases T. infestans has been the responsible vector. Contributing to its genetic knowledge will increase Our understanding of the capacity of geographic expansion and domiciliation of triatomines. Populations of all infestans subcomplex species, T. infestans, T. delpontei, T. platensis and T. melanosoma and the so-called T. infestans "dark morph", from many South American countries were studied. A total of 10 and 7 different ITS-2 and ITS-1 haplotypes, respectively, were found. The total intraspecific ITS-2 nucleotide variability detected in T. infestans is the highest hitherto known in triatomines. ITS-1 minisatellites, detected for the first time in tri…
Genomic Changes of Chagas Disease Vector, South America
2004
We analyzed the main karyologic changes that have occurred during the dispersion of Triatoma infestans, the main vector of Chagas disease. We identified two allopatric groups, named Andean and non-Andean. The Andean specimens present C-heterochromatic blocks in most of their 22 chromosomes, whereas non-Andean specimens have only 4-7 autosomes with C-banding. These heterochromatin differences are the likely cause of a striking DNA content variation (approximately 30%) between Andean and non-Andean insects. Our study, together with previous historical and genetic data, suggests that T. infestans was originally a sylvatic species, with large quantities of DNA and heterochromatin, inhabiting th…
Out of the Abyss: Genome and Metagenome Mining Reveals Unexpected Environmental Distribution of Abyssomicins.
2020
AbstractNatural products have traditionally been discovered through the screening of culturable microbial isolates from all sort of environments. The sequencing revolution allowed the identification of dozens of biosynthetic gene clusters (BGCs) within single bacterial genomes, either from cultured or uncultured strains. However, we are still far from fully exploiting the microbial reservoir, as most of the species are non-model organisms with complex regulatory systems and yet recalcitrant to be engineered. Today, genomic and metagenomic data produced by laboratories worldwide covering the most different natural and artificial environments on Earth, are an invaluable source of raw informat…
Phylogenetic Distribution of Polysaccharide-Degrading Enzymes in Marine Bacteria
2021
Deconstruction is an essential step of conversion of polysaccharides, and polysaccharide-degrading enzymes play a key role in this process. Although there is recent progress in the identification of these enzymes, the diversity and phylogenetic distribution of these enzymes in marine microorganisms remain largely unknown, hindering our understanding of the ecological roles of marine microorganisms in the ocean carbon cycle. Here, we studied the phylogenetic distribution of nine types of polysaccharide-degrading enzymes in marine bacterial genomes. First, we manually compiled a reference sequence database containing 961 experimentally verified enzymes. With this reference database, we annota…
Yaws re-emergence and bacterial drug resistance selection after mass administration of azithromycin: a genomic epidemiology investigation
2020
Summary Background In a longitudinal study assessing the WHO strategy for yaws eradication using mass azithromycin treatment, we observed resurgence of yaws cases with dominance of a single JG8 sequence type and emergence of azithromycin-resistant Treponema pallidum subspecies pertenue (T p pertenue). Here, we analyse genomic changes in the bacterial population using samples collected during the study. Methods We did whole bacterial genome sequencing directly on DNA extracted from 37 skin lesion swabs collected from patients on Lihir Island, Papua New Guinea, between April 1, 2013, and Nov 1, 2016. We produced phylogenies and correlated these with spatiotemporal information to investigate t…
Genomic determinants of protein folding thermodynamics in prokaryotic organisms.
2004
Here we investigate how thermodynamic properties of orthologous proteins are influenced by the genomic environment in which they evolve. We performed a comparative computational study of 21 protein families in 73 prokaryotic species and obtained the following main results. (i) Protein stability with respect to the unfolded state and with respect to misfolding are anticorrelated. There appears to be a trade-off between these two properties, which cannot be optimized simultaneously. (ii) Folding thermodynamic parameters are strongly correlated with two genomic features, genome size and G+C composition. In particular, the normalized energy gap, an indicator of folding efficiency in statistical…