Search results for "Geodesic"

showing 10 items of 131 documents

The Geodesic Ray Transform on Spherically Symmetric Reversible Finsler Manifolds

2023

We show that the geodesic ray transform is injective on scalar functions on spherically symmetric reversible Finsler manifolds where the Finsler norm satisfies a Herglotz condition. We use angular Fourier series to reduce the injectivity problem to the invertibility of generalized Abel transforms and by Taylor expansions of geodesics we show that these Abel transforms are injective. Our result has applications in linearized boundary rigidity problem on Finsler manifolds and especially in linearized elastic travel time tomography.

Mathematics - Differential Geometryinverse problems44A12 53A99 86A22inversio-ongelmatFunctional Analysis (math.FA)Mathematics - Functional Analysisdifferentiaaligeometriageodesic ray transformDifferential Geometry (math.DG)FOS: MathematicsMathematics::Metric GeometryGeometry and TopologyMathematics::Differential GeometryMathematics::Symplectic Geometryintegral geometry
researchProduct

Failure of topological rigidity results for the measure contraction property

2014

We give two examples of metric measure spaces satisfying the measure contraction property MCP(K,N) but having different topological dimensions at different regions of the space. The first one satisfies MCP(0,3) and contains a subset isometric to $\mathbb{R}$, but does not topologically split. The second space satisfies MCP(2,3) and has diameter $\pi$, which is the maximal possible diameter for a space satisfying MCP(N-1,N), but is not a topological spherical suspension. The latter example gives an answer to a question by Ohta.

Mathematics - Differential Geometrymetric measure spacesGeodesicPhysics::Instrumentation and DetectorsQuantitative Biology::Tissues and Organsmeasure contraction propertyMetric Geometry (math.MG)53C23 (Primary) 28A33 49Q20 (Secondary)Ricci curvature lower boundsTopologyPotential theorymaximal diameter theoremnonbranchingRigidity (electromagnetism)Mathematics - Metric GeometryDifferential Geometry (math.DG)splitting theoremFOS: MathematicsSplitting theoremContraction (operator theory)AnalysisMathematicsgeodesics
researchProduct

Pestov identities and X-ray tomography on manifolds of low regularity

2021

We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds $(M,g)$ with $g \in C^{1,1}$. In addition to a proof, we produce a redefinition of simplicity that is compatible with rough geometry. This $C^{1,1}$-regularity is optimal on the H\"older scale. The bulk of the article is devoted to setting up a calculus of differential and curvature operators on the unit sphere bundle atop this non-smooth structure.

Mathematics - Differential Geometrynon-smooth geometrygeodesic X-ray tomographyinverse problems44A12 53C22 53C65 58J32Pestov identityinversio-ongelmatdifferentiaaligeometriaRiemannin monistotMathematics - Analysis of PDEsDifferential Geometry (math.DG)tomografiaintegraalilaskentaFOS: MathematicsMathematics::Differential Geometryintegral geometryAnalysis of PDEs (math.AP)
researchProduct

Determining an unbounded potential from Cauchy data in admissible geometries

2011

In [4 Dos Santos Ferreira , D. , Kenig , C.E. , Salo , M. , Uhlmann , G. ( 2009 ). Limiting Carleman weights and anisotropic inverse problems . Invent. Math. 178 : 119 – 171 . [Crossref], [Web of Science ®], [Google Scholar] ] anisotropic inverse problems were considered in certain admissible geometries, that is, on compact Riemannian manifolds with boundary which are conformally embedded in a product of the Euclidean line and a simple manifold. In particular, it was proved that a bounded smooth potential in a Schrödinger equation was uniquely determined by the Dirichlet-to-Neumann map in dimensions n ≥ 3. In this article we extend this result to the case of unbounded potentials, namely tho…

Mathematics::Analysis of PDEsBoundary (topology)Calderón inverse problem01 natural sciencesMathematics - Analysis of PDEsSpectral clusterFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsAnisotropyMathematicsApplied Mathematics010102 general mathematicsMathematical analysista111Cauchy distributionInverse problemMathematics::Spectral TheoryAttenuated geodesic ray transformCarleman estimates010101 applied mathematicsProduct (mathematics)Mathematics::Differential GeometryComplex geometrical opticsAnalysisAnalysis of PDEs (math.AP)Communications in Partial Differential Equations
researchProduct

Compact Hopf hypersurfaces of constant mean curvature in complex space forms

1994

We prove that every connected compact Hopf hypersurface of a complex space form , contained in a geodesic ball of radius strictly smaller than the injectivity radius of , having constant mean curvature and with if if λ < 0 is a geodesic sphere of .

Mean curvatureGeodesicGeodesic domeMathematical analysislaw.inventionHypersurfaceComplex spaceDifferential geometrylawMathematics::Differential GeometryGeometry and TopologyBall (mathematics)AnalysisMathematicsAnnals of Global Analysis and Geometry
researchProduct

Pappus type theorems for motions along a submanifold

2004

Abstract We study the volumes volume( D ) of a domain D and volume( C ) of a hypersurface  C obtained by a motion along a submanifold P of a space form  M n λ . We show: (a) volume( D ) depends only on the second fundamental form of  P , whereas volume( C ) depends on all the i th fundamental forms of  P , (b) when the domain that we move D 0 has its q -centre of mass on  P , volume( D ) does not depend on the mean curvature of  P , (c) when D 0 is q -symmetric, volume( D ) depends only on the intrinsic curvature tensor of  P ; and (d) if the image of  P by the ln of the motion (in a sense which is well-defined) is not contained in a hyperplane of the Lie algebra of SO ( n − q − d ), and C …

Mean curvatureGeodesicVolumeSpace formParallel motionImage (category theory)Second fundamental formMathematical analysisSubmanifoldMotion along a submanifoldCombinatoricsHypersurfaceComputational Theory and MathematicsTubePappus formulaeLie algebraDomain (ring theory)Comparison theoremMathematics::Differential GeometryGeometry and TopologyAnalysisMathematicsDifferential Geometry and its Applications
researchProduct

Transport optimal sur les structures sous-Riemanniennes admettant des géodésiques minimisantes singulières

2017

This thesis is devoted to the study of the Monge transport problem for the quadratic cost in sub-Riemannian geometry and the essential conditions to obtain existence and uniqueness of solutions. These works consist in extending these results to the case of sub-Riemannian structures admitting singular minimizing geodesics. In a first part, we develop techniques inspired by works by Cavalletti and Huesmann in order to obtain significant results for structures of rank 2 in dimension 4. In a second part, we study analytical tools of the h-semiconcavity of the sub-Riemannian distance and we show how this type of regularity can lead to the well-posedness of the Monge problem in general cases.

Monge problem[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]Géométrie sous-RiemannienneGéodésiques minimisantes singulièresSingular minimizing geodesic[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG]Problème de MongeSub-Riemannian geometry
researchProduct

Lorentzian-geometry-based analysis of airplane boarding policies highlights "slow passengers first" as better.

2019

We study airplane boarding in the limit of large number of passengers using geometric optics in a Lorentzian metric. The airplane boarding problem is naturally embedded in a 1+1 dimensional space-time with a flat Lorentzian metric. The duration of the boarding process can be calculated based on a representation of the one-dimensional queue of passengers attempting to reach their seats, into a two-dimensional space-time diagram. The ability of a passenger to delay other passengers depends on their queue positions and row designations. This is equivalent to the causal relationship between two events in space-time, whereas two passengers are time-like separated if one is blocking the other, an…

Physics - Physics and Societygravitation cosmology & astrophysicsbusiness.product_categoryGeodesicComputer scienceinterdisciplinary physicsProcess (computing)FOS: Physical sciencesstatistical physicsGeometryPhysics and Society (physics.soc-ph)Aisleatomic molecular & optical01 natural sciences010305 fluids & plasmasAirplane0103 physical sciencesMetric (mathematics)general physicsLimit (mathematics)010306 general physicsRepresentation (mathematics)businessQueuePhysical review. E
researchProduct

On the Uniqueness of the Energy and Momenta of an Asymptotically Minkowskian Space-Time: The Case of the Schwarzschild Metric

2013

Some theorems about the uniqueness of the energy of asymptotically Minkowskian spaces are recalled. The suitability of almost everywhere Gauss coordinates to define some kind of physical energy in these spaces is commented. Schwarzschild metric, when its source radius is larger than the Schwarzschild radius and in the case of a black hole, is considered. In both cases, by using a specific almost everywhere Gaussian coordinate system, a vanishing energy results. We explain why this result is not in contradiction with the quoted theorems. Finally we conclude that this metric is a particular case of what we have called elsewhere a creatable universe.

PhysicsBlack holeGeneral Relativity and Quantum CosmologyClassical mechanicsKerr metricSchwarzschild geodesicsSchwarzschild metricDeriving the Schwarzschild solutionAlmost everywhereUniquenessSchwarzschild radiusMathematical physics
researchProduct

Coll Positioning systems: a two-dimensional approach

2006

The basic elements of Coll positioning systems (n clocks broadcasting electromagnetic signals in a n-dimensional space-time) are presented in the two-dimensional case. This simplified approach allows us to explain and to analyze the properties and interest of these relativistic positioning systems. The positioning system defined in flat metric by two geodesic clocks is analyzed. The interest of the Coll systems in gravimetry is pointed out.

PhysicsBroadcasting (networking)Positioning systemGeodesicMetric (mathematics)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)GravimetryTopologyGeneral Relativity and Quantum Cosmology
researchProduct