Search results for "Geometria"

showing 10 items of 422 documents

On the arithmetically Cohen-Macaulay property for sets of points in multiprojective spaces

2017

We study the arithmetically Cohen-Macaulay (ACM) property for finite sets of points in multiprojective spaces, especially ( P 1 ) n (\mathbb P^1)^n . A combinatorial characterization, the ( ⋆ ) (\star ) -property, is known in P 1 × P 1 \mathbb P^1 \times \mathbb P^1 . We propose a combinatorial property, ( ⋆ s ) (\star _s) with 2 ≤ s ≤ n 2\leq s\leq n , that directly generalizes the ( ⋆ ) (\star ) -property to ( P 1 ) n (\mathbb P^1)^n for larger n n . We show that X X is ACM if and only if it satisfies the ( ⋆ n ) (\star _n) -property. The main tool for several of our results is an extension to the multiprojective setting of certain liaison methods in projective space.

Property (philosophy)General MathematicsStar (game theory)Arithmetically Cohen-Macaulay; Linkage; Points in multiprojective spacescohen- macaulayCharacterization (mathematics)Commutative Algebra (math.AC)01 natural sciencesCombinatoricsMathematics - Algebraic GeometryPoints in multiprojective spaces0103 physical sciencesFOS: MathematicsProjective space0101 mathematicsFinite setAlgebraic Geometry (math.AG)multiprojective spacesMathematicsDiscrete mathematicsMathematics::Commutative AlgebraLinkageArithmetically Cohen-Macaulay Linkage Points in multiprojective spacesApplied Mathematics010102 general mathematicsExtension (predicate logic)Mathematics - Commutative AlgebraArithmetically Cohen-MacaulaypointsSettore MAT/02 - Algebracohen- macaulay multiprojective spaces points010307 mathematical physicsSettore MAT/03 - Geometria
researchProduct

Elementary (-1)-curves of P-3

2006

In this note we deal with rational curves in P^3 which are images of a line by means of a finite sequence of cubo-cubic Cremona transformations. We prove that these curves can always be obtained applying to the line a sequence of such transformations increasing at each step the degree of the curve. As a corollary we get a result about curves that can give speciality for linear systems of P^3.

Discrete mathematicsSequenceAlgebra and Number TheoryDegree (graph theory)Linear system14C20Finite sequenceMathematics - Algebraic GeometryCorollaryLinear systems fat pointsFamily of curvesLine (geometry)FOS: MathematicsSettore MAT/03 - GeometriaAlgebraic Geometry (math.AG)Computer Science::DatabasesMathematics
researchProduct

Counting and equidistribution in quaternionic Heisenberg groups

2020

AbstractWe develop the relationship between quaternionic hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on quaternionic hyperbolic spaces, especially in dimension 2. We prove a Mertens counting formula for the rational points over a definite quaternion algebra A over ${\mathbb{Q}}$ in the light cone of quaternionic Hermitian forms, as well as a Neville equidistribution theorem of the set of rational points over A in quaternionic Heisenberg groups.

Mathematics - Differential GeometryPure mathematicsMathematics::Dynamical SystemsGeneral MathematicsHyperbolic geometryMathematics::Number Theory[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Dimension (graph theory)11E39 11F06 11N45 20G20 53C17 53C22 53C55[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Equidistribution theorem01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]differentiaaligeometriaSet (abstract data type)Light cone0103 physical sciences0101 mathematics[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]MathematicslukuteoriaQuaternion algebraMathematics - Number Theory010102 general mathematicsryhmäteoriaHermitian matrix[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]Action (physics)010307 mathematical physicsMathematics::Differential Geometry[MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT]
researchProduct

L'azione del gruppo simplettico associata ad un'estensione quadratica di campi

2000

Given a quadratic extension L/K of fields and a regular alternating space (V; f) of finite dimension over L, we classify K-subspaces of V which do not split into the orthogonal sum of two proper K-subspaces. This allows one to determine the orbits of the group Sp_L(V; f) in the set of K-subspaces of V.

Geometry of classical groups canonical forms reduction classificationSettore MAT/03 - Geometria
researchProduct

Solvable Extensions of Nilpotent Complex Lie Algebras of Type {2n,1,1}

2018

We investigate derivations of nilpotent complex Lie algebras of type {2n, 1, 1} with the aim to classify nilpotent complex Lie algebras the commutator ideals of which have codimension one and are nilpotent Lie algebras of type {2n, 1, 1}

Pure mathematicsGeneral Mathematics010102 general mathematicsType (model theory)01 natural sciencesNilpotentderivations of Lie algebras0103 physical sciencesLie algebraSettore MAT/03 - Geometria010307 mathematical physics0101 mathematicsNilpotent Lie algebraMathematicsMoscow Mathematical Journal
researchProduct

Skeleta of affine hypersurfaces

2014

A smooth affine hypersurface Z of complex dimension n is homotopy equivalent to an n-dimensional cell complex. Given a defining polynomial f for Z as well as a regular triangulation of its Newton polytope, we provide a purely combinatorial construction of a compact topological space S as a union of components of real dimension n, and prove that S embeds into Z as a deformation retract. In particular, Z is homotopy equivalent to S.

Pure mathematicsPolynomialMathematicsofComputing_GENERALAffinePolytopeComplex dimensionTopological spaceTriangulation14J70Mathematics - Algebraic GeometryComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONFOS: MathematicsHomotopy equivalenceAlgebraic Topology (math.AT)Mathematics - Algebraic TopologyKato–Nakayama spaceAlgebraic Geometry (math.AG)SkeletonMathematicsToric degenerationTriangulation (topology)HomotopyLog geometry14J70 14R99 55P10 14M25 14T05RetractionHypersurfaceHypersurfaceNewton polytopeSettore MAT/03 - GeometriaGeometry and TopologyAffine transformationKato-Nakayama space14R99
researchProduct

Intrinsic rectifiability via flat cones in the Heisenberg group

2022

We give a geometric criterion for a topological surface in the first Heisenberg group to be an intrinsic Lipschitz graph, using planar cones instead of the usual open cones. peerReviewed

differentiaaligeometriaLien ryhmätmittateoria
researchProduct

Extending an example by Colding and Minicozzi

2018

Extending an example by Colding and Minicozzi, we construct a sequence of properly embedded minimal disks $\Sigma_i$ in an infinite Euclidean cylinder around the $x_3$-axis with curvature blow-up at a single point. The sequence converges to a non smooth and non proper minimal lamination in the cylinder. Moreover, we show that the disks $\Sigma_i$ are not properly embedded in a sequence of open subsets of $\mathbb{ R}^3$ that exhausts $\mathbb{ R}^3$.

Mathematics - Differential GeometryvariaatiolaskentaLamination (topology)Curvatureminimal surfaces01 natural sciencesCombinatoricsdifferentiaaligeometria510 Mathematics0103 physical sciencesEuclidean geometryFOS: MathematicsCylinderPhysics::Atomic Physics0101 mathematicsMathematicsSequence010102 general mathematicsSigmaminimal laminationsColding-Minicozzi theoryDifferential geometryDifferential Geometry (math.DG)53A10 (Primary)010307 mathematical physicsGeometry and TopologyMathematics::Differential GeometrySingle point
researchProduct

The nonabelian tensor product of two soluble minimax groups

2010

Settore MAT/02 - AlgebraChernikov groups soluble minimax groups nonabelian tensor productsSettore MAT/03 - Geometria
researchProduct

Restituzioni omografiche di finte cupole: la cupola di Santa Maria dei Rimedi a Palermo

2016

Nel vasto repertorio siciliano delle prospettive solide, un ruolo di spicco è ricoperto da un esempio unico di realizzazione di finta prospettiva di cupola sferica su copertura ad arco ribassato, ricavata sull’incrocio del transetto con la navata centrale nella chiesa di Santa Maria dei Rimedi a Palermo. L’unicità di quest’opera sta nella geometria reale della cupola ribassata. Infatti gli esempi più diffusi di finte cupole in Sicilia sono realizzati su soffitti piani lignei o in calcestruzzo. In Appendice 1 si potrà consultare il repertorio delle finte cupole esistenti in Sicilia per la cui stesura ci si è avvalsi degli studi condotti dall’architetto Giuseppe Ingaglio nell’ambito della sua…

finte cupole anamorfosi trattatistica geometria parametricaSettore ICAR/17 - Disegno
researchProduct