Search results for "Geometry and Topology"

showing 10 items of 457 documents

Projective mappings between projective lattice geometries

1995

The concept of projective lattice geometry generalizes the classical synthetic concept of projective geometry, including projective geometry of modules.

Discrete mathematicsProjective harmonic conjugatePure mathematicsCollineationDuality (projective geometry)Projective spaceGeometry and TopologyProjective planeProjective differential geometryPencil (mathematics)Projective geometryMathematicsJournal of Geometry
researchProduct

A Newman property for BLD-mappings

2019

We define a Newman property for BLD-mappings and prove that for a BLD-mapping between generalized manifolds equipped with complete path-metrics, this property is equivalent to the branch set being porous when the codomain is LLC. peerReviewed

Discrete mathematicsProperty (philosophy)BLD-mappings010102 general mathematicsMetric Geometry (math.MG)30L10 30C65 57M1216. Peace & justice01 natural sciences010101 applied mathematicsSet (abstract data type)Mathematics - Metric GeometryPath (graph theory)FOS: MathematicsGeometry and Topologygeometria0101 mathematicsMathematics
researchProduct

On linear extension operators from growths of compactifications of products

1996

Abstract We obtain some results on product spaces. Among them we prove that for noncompact spaces X 1 and X 2 , the norm of every linear extension operator from C ( β ( X 1 × X 2 ) β ( X 1 × X 2 )) into C ( β ( X 1 × X 2 )) is greater or equal than 2, and also that β ( X 1 × X 2 ) β ( X 1 × X 2 ) is not a neighborhood retract of β ( X 1 × X 2 ).

Discrete mathematicsPseudocompact spacePseudocompact spaceCrystallographyOperator (computer programming)Linear extensionProduct (mathematics)RetractStone-Čech compactificationStone–Čech compactificationLinear extension operatorProduct topologyGeometry and TopologyProduct spaceMathematicsTopology and its Applications
researchProduct

Multi-valued $$F$$ F -contractions in 0-complete partial metric spaces with application to Volterra type integral equation

2013

We study the existence of fixed points for multi-valued mappings that satisfy certain generalized contractive conditions in the setting of 0-complete partial metric spaces. We apply our results to the solution of a Volterra type integral equation in ordered 0-complete partial metric spaces.

Discrete mathematicsPure mathematicsAlgebra and Number Theory0-completenepartial metric spacesApplied MathematicsInjective metric spaceclosed multi-valued mappingT-normEquivalence of metricsIntrinsic metricConvex metric spaceComputational MathematicsUniform continuityMetric spacefixed pointSettore MAT/05 - Analisi MatematicaFréchet spaceGeometry and TopologyF-contractionAnalysisMathematicsRevista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas
researchProduct

An exact and efficient approach for computing a cell in an arrangement of quadrics

2006

AbstractWe present an approach for the exact and efficient computation of a cell in an arrangement of quadric surfaces. All calculations are based on exact rational algebraic methods and provide the correct mathematical results in all, even degenerate, cases. By projection, the spatial problem is reduced to the one of computing planar arrangements of algebraic curves. We succeed in locating all event points in these arrangements, including tangential intersections and singular points. By introducing an additional curve, which we call the Jacobi curve, we are able to find non-singular tangential intersections. We show that the coordinates of the singular points in our special projected plana…

Discrete mathematicsPure mathematicsArrangementsControl and OptimizationFunction field of an algebraic varietyAlgebraic curvesMathematicsofComputing_NUMERICALANALYSISComputational geometryComputer Science ApplicationsComputational MathematicsComputational Theory and MathematicsJacobian curveAlgebraic surfaceComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONReal algebraic geometryAlgebraic surfacesExact algebraic computationAlgebraic functionGeometry and TopologyAlgebraic curveAlgebraic numberRobustnessMathematicsSingular point of an algebraic varietyComputational Geometry
researchProduct

A note on projective coordinate systems of modular lattices

1993

This note clarifies the combinatorial nature of projective coordinate systems of modular upper continuous lattices. It generalizes the classical relationship between 3-dimensional Desarguesian configurations and coordinate systems of projective 3-spaces.

Discrete mathematicsPure mathematicsClassical modular curveBlocking setDuality (projective geometry)Projective spaceGeometry and TopologyEllipsoidal coordinatesCoordinate spacePencil (mathematics)Twisted cubicMathematicsJournal of Geometry
researchProduct

Nilpotent Lie algebras with 2-dimensional commutator ideals

2011

Abstract We classify all (finitely dimensional) nilpotent Lie k -algebras h with 2-dimensional commutator ideals h ′ , extending a known result to the case where h ′ is non-central and k is an arbitrary field. It turns out that, while the structure of h depends on the field k if h ′ is central, it is independent of k if h ′ is non-central and is uniquely determined by the dimension of h . In the case where k is algebraically or real closed, we also list all nilpotent Lie k -algebras h with 2-dimensional central commutator ideals h ′ and dim k h ⩽ 11 .

Discrete mathematicsPure mathematicsCommutatorNumerical AnalysisAlgebra and Number TheoryNilpotent Lie algebras Pairs of alternating formsNon-associative algebraCartan subalgebraKilling formCentral seriesPairs of alternating formsAdjoint representation of a Lie algebraNilpotent Lie algebrasLie algebraDiscrete Mathematics and CombinatoricsSettore MAT/03 - GeometriaGeometry and TopologyNilpotent groupMathematicsLinear Algebra and its Applications
researchProduct

On sets of subspaces closed under reguli

1992

Using a representation of chain geometries where points are certain subspaces of a projective space and chains are reguli, we give an algebraic description of the weak subspaces of the chain geometry (i.e. the subsets of the pointset which are closed with respect to reguli).

Discrete mathematicsPure mathematicsDifferential geometryChain (algebraic topology)Hyperbolic geometryProjective spaceGeometry and TopologyAlgebraic geometryAlgebraic numberLinear subspaceMathematicsProjective geometryGeometriae Dedicata
researchProduct

Topological classification of gradient-like diffeomorphisms on 3-manifolds

2004

Abstract We give a complete invariant, called global scheme , of topological conjugacy classes of gradient-like diffeomorphisms, on compact 3-manifolds. Conversely, we can realize any abstract global scheme by such a diffeomorphism.

Discrete mathematicsPure mathematicsMathematics::Dynamical SystemsTopological classificationTopological classificationGeometry and TopologyDiffeomorphismInvariant (mathematics)Topological conjugacyMathematics::Symplectic GeometryMorse–Smale diffeomorphismsMathematics3-manifoldsTopology
researchProduct

Best proximity point theorems for rational proximal contractions

2013

Abstract We provide sufficient conditions which warrant the existence and uniqueness of the best proximity point for two new types of contractions in the setting of metric spaces. The presented results extend, generalize and improve some known results from best proximity point theory and fixed-point theory. We also give some examples to illustrate and validate our definitions and results. MSC:41A65, 46B20, 47H10.

Discrete mathematicsPure mathematicsMetric spaceDifferential geometrySettore MAT/05 - Analisi MatematicaApplied MathematicsProximity problemsUniquenessGeometry and TopologyFixed pointPoint theorybest proximity point contraction fixed point generalized proximal contraction optimal approximate solutionMathematicsFixed Point Theory and Applications
researchProduct