Search results for "Ginkgo"
showing 10 items of 21 documents
ADAM10 in Alzheimer's disease: Pharmacological modulation by natural compounds and its role as a peripheral marker.
2019
Abstract Alzheimer’s disease (AD) represents a global burden in the economics of healthcare systems. Amyloid-β (Aβ) peptides are formed by amyloid-β precursor protein (AβPP) cleavage, which can be processed by two pathways. The cleavage by the α-secretase A Disintegrin And Metalloprotease 10 (ADAM10) releases the soluble portion (sAβPPα) and prevents senile plaques. This pathway remains largely unknown and ignored, mainly regarding pharmacological approaches that may act via different signaling cascades and thus stimulate non-amyloidogenic cleavage through ADAM10. This review emphasizes the effects of natural compounds on ADAM10 modulation, which eventuates in a neuroprotective mechanism. M…
Why Women Have More Alzheimer's Disease Than Men: Gender and Mitochondrial Toxicity of Amyloid-β Peptide
2010
The main risk factors for developing Alzheimer's disease (AD) are age and gender. The incidence of the disease is higher in women than in men, and this cannot simply be attributed to the higher longevity of women versus men. Thus, there must be a specific pathogenic mechanism to explain the higher incidence of AD cases in women. In this regard, it is notable that mitochondria from young females are protected against amyloid-beta toxicity, generate less reactive oxygen species, and release less apoptogenic signals than those from males. However, all this advantage is lost in mitochondria from old females. Since estrogenic compounds protect against mitochondrial toxicity of amyloid-beta, estr…
Methodological matters on an Alzheimer's dementia trial: is a double-blind randomized controlled study design sufficient to draw strong conclusions o…
2007
Causes and Consequences of Damage to Mitochondria: Study of Functional Aspects by Flow Cytometry
2003
A rapidly increasing amount of data supports the view that progressive bioenergetic loss caused by injury of the main energy-producing subcellular organelles, that is, the mitochondria, plays a key role in aging. A link between senescence and energy loss is already implied in Harman's (1) free radical theory of aging, according to which oxygen-derived free radicals injure the cells, with concomitant impairment of performance at the cellular and physiological levels. Further, Miquel and co-workers (2, 3) have proposed a mitochondrial theory of aging, according to which aging results from oxygen stress damage to the mitochondrial genome, with concomitant bioenergetic decline. More recently, a…
Excitotoxic Hippocampal Membrane Breakdown and its Inhibition by Bilobalide: Role of Chloride Fluxes
2003
We have previously shown that hypoxia and N-methyl-D-aspartate (NMDA) receptor activation induce breakdown of choline-containing phospholipids in rat hippocampus, a process which is mediated by calcium influx and phospholipase A (2) activation. Bilobalide, a constituent of Ginkgo biloba, inhibited this process in a potent manner (Weichel et al., Naunyn-Schmiedeberg's Arch. Pharmacol. 360, 609-615, 1999). In this study, we used fluorescence microscopy and radioactive flux measurements to show that bilobalide does not interfere with NMDA-induced calcium influx. Instead, bilobalide seems to inhibit NMDA-induced fluxes of chloride ions through ligand-operated chloride channels. In our experimen…
Nutritional prevention of cognitive decline and dementia.
2018
Cognitive impairment results from a complex interplay of many factors. The most important independent predictor of cognitive decline is age but other contributing factors include demographic, genetic, socio-economic, and environmental parameters, including nutrition. The number of persons with cognitive decline and dementia will increase in the next decades in parallel with aging of the world population. Effective pharmaceutical treatments for age-related cognitive decline are lacking, emphasizing the importance of prevention strategies. There is extensive evidence supporting a relationship between diet and cognitive functions. Thus, nutritional approaches to prevent or slow cognitive decli…
Role of GABAergic antagonism in the neuroprotective effects of bilobalide
2006
Bilobalide, a constituent of Ginkgo biloba, has neuroprotective properties. Its mechanism of action is unknown but it was recently found to block GABA(A) receptors. The goal of this study was to test the potential role of a GABAergic mechanism for the neuroprotective activity of bilobalide. In rat hippocampal slices exposed to NMDA, release of choline indicates breakdown of membrane phospholipids. NMDA-induced choline release was almost completely blocked in the presence of bilobalide (10 microM) and under low-chloride conditions. Bicuculline (100 microM), a competitive antagonist at GABA(A) receptors, reduced NMDA-induced choline release to a small extent (-23%). GABA (100 microM) partiall…
Photochemical Approaches to the Bilobalide Core
2017
Bilobalide is a tetracyclic sesquiterpene containing three contiguous γ-lactone rings and an unusual tert-butyl group, which is found in the leaves of the ginkgo tree (Ginkgo biloba). Three different photochemical approaches towards bilobalide's unique skeleton are presented. A meta photocycloaddition, a [2 + 2] photocycloaddition, and a Paterno–Buchi-reaction were chosen as the respective key steps.
Ginkgo biloba induces different gene expression signatures of oncogenic pathways in malignant and non-malignant cells in the liver
2016
Ginkgo biloba induces different gene expression signatures and oncogenic pathways in malignant and non-malignant cells of the liver
2018
Ginkgo biloba (EGb761) is a widely used botanical drug. Several reports indicate that EGb761 confers preventive as well as anti-tumorigenic properties in a variety of tumors, including hepatocellular carcinoma (HCC). We here evaluate functional effects and molecular alterations induced by EGb761 in hepatoma cells and non-malignant hepatocytes. Hepatoma cell lines, primary human HCC cells and immortalized human hepatocytes (IH) were exposed to various concentrations (0-1000 μg/ml) of EGb761. Apoptosis and proliferation were evaluated after 72h of EGb761 exposure. Response to oxidative stress, tumorigenic properties and molecular changes were further investigated. While anti-oxidant effects w…