Search results for "Ginkgolides"

showing 4 items of 4 documents

Excitotoxic Hippocampal Membrane Breakdown and its Inhibition by Bilobalide: Role of Chloride Fluxes

2003

We have previously shown that hypoxia and N-methyl-D-aspartate (NMDA) receptor activation induce breakdown of choline-containing phospholipids in rat hippocampus, a process which is mediated by calcium influx and phospholipase A (2) activation. Bilobalide, a constituent of Ginkgo biloba, inhibited this process in a potent manner (Weichel et al., Naunyn-Schmiedeberg's Arch. Pharmacol. 360, 609-615, 1999). In this study, we used fluorescence microscopy and radioactive flux measurements to show that bilobalide does not interfere with NMDA-induced calcium influx. Instead, bilobalide seems to inhibit NMDA-induced fluxes of chloride ions through ligand-operated chloride channels. In our experimen…

Calcium IsotopesMaleN-Methylaspartatemedicine.drug_classGlycineCyclopentanes44'-Diisothiocyanostilbene-22'-Disulfonic AcidIn Vitro TechniquesHippocampusChlorideCholinechemistry.chemical_compoundChloridesBilobalideFurosemideExcitatory Amino Acid AgonistsmedicineAnimalsCholineDrug InteractionsPharmacology (medical)Channel blockerRats WistarDiureticsFuransCell MembraneGeneral MedicineReceptor antagonistPyrrolidinonesRatsPsychiatry and Mental healthGinkgolidesnervous systemchemistryBiochemistryDIDSPotassiumChloride channelBiophysicsNMDA receptorCalciumDiterpenesDizocilpine MaleateExcitatory Amino Acid AntagonistsSynaptosomesmedicine.drugPharmacopsychiatry
researchProduct

Role of GABAergic antagonism in the neuroprotective effects of bilobalide

2006

Bilobalide, a constituent of Ginkgo biloba, has neuroprotective properties. Its mechanism of action is unknown but it was recently found to block GABA(A) receptors. The goal of this study was to test the potential role of a GABAergic mechanism for the neuroprotective activity of bilobalide. In rat hippocampal slices exposed to NMDA, release of choline indicates breakdown of membrane phospholipids. NMDA-induced choline release was almost completely blocked in the presence of bilobalide (10 microM) and under low-chloride conditions. Bicuculline (100 microM), a competitive antagonist at GABA(A) receptors, reduced NMDA-induced choline release to a small extent (-23%). GABA (100 microM) partiall…

MaleN-MethylaspartateBrain EdemaCyclopentanesIn Vitro TechniquesPharmacologyBicucullineInhibitory postsynaptic potentialHippocampusArticlegamma-Aminobutyric acidCholineGABA AntagonistsRats Sprague-Dawleychemistry.chemical_compoundBilobalideExcitatory Amino Acid AgonistsmedicineAnimalsPicrotoxinDrug InteractionsFuransMolecular Biologygamma-Aminobutyric AcidChemistryGABAA receptorGeneral NeuroscienceBicucullineGABA receptor antagonistBridged Bicyclo Compounds HeterocyclicRatsGinkgolidesNeuroprotective Agentsnervous systemNonlinear DynamicsMechanism of actionArea Under CurveGABAergicNeurology (clinical)medicine.symptomSynaptosomesDevelopmental Biologymedicine.drugBrain Research
researchProduct

Bilobalide, a constituent of Ginkgo biloba , inhibits NMDA-induced phospholipase A 2 activation and phospholipid breakdown in rat hippocampus

2000

In rat hippocampal slices superfused with magnesium-free buffer, glutamate (1 mM) caused the release of large amounts of choline due to phospholipid breakdown. This phenomenon was mimicked by N-methyl-D-aspartate (NMDA) in a calcium-sensitive manner and was blocked by NMDA receptor antagonists such as MK-801 and 7-chlorokynurenate. The NMDA-induced release of choline was not caused by activation of phospholipase D but was mediated by phospholipase A2 (PLA2) activation as the release of choline was accompanied by the formation of lyso-phosphatidylcholine (lyso-PC) and glycerophospho-choline (GPCh) and was blocked by 5-[2-(2-carboxyethyl)-4-dodecanoyl-3,5-dimethylpyrrol-1-yl]pentano ic acid, …

MaleMicrodialysisN-MethylaspartateMicrodialysisGlycineCyclopentanesPharmacologyHippocampal formationHippocampusReceptors N-Methyl-D-AspartatePhospholipases ACholinechemistry.chemical_compoundPhospholipase A2BilobalideSeizuresAnimalsCholineRats WistarFuransCells CulturedPhospholipidsPharmacologyPlants MedicinalDose-Response Relationship DrugbiologyPhospholipase DGlutamate receptorGinkgo bilobaLysophosphatidylcholinesGeneral MedicineGlycerylphosphorylcholineRatsEnzyme ActivationPhospholipases A2Ginkgolideschemistrybiology.proteinNMDA receptorDiterpenesNaunyn-Schmiedeberg's Archives of Pharmacology
researchProduct

Phospholipid breakdown and choline release under hypoxic conditions: inhibition by bilobalide, a constituent of Ginkgo biloba

1997

A marked increase of choline release from rat hippocampal slices was observed when the slices were superfused with oxygen-free buffer, indicating hypoxia-induced hydrolysis of choline-containing phospholipids. This increase of choline release was suppressed by bilobalide, an ingredient of Ginkgo biloba, but not by a mixture of ginkgolides. The EC50 value for bilobalide was 0.38 microM. In ex vivo experiments, bilobalide also inhibited hypoxia-induced choline release when given p.o. in doses of 2-20 mg/kg 1 h prior to slice preparation. The half-maximum effect was observed with 6 mg/kg bilobalide. A similar effect was noted after p.o. administration of 200 mg/kg EGb 761, a ginkgo extract con…

MaleDrug Evaluation PreclinicalCyclopentanesPharmacologyHippocampusCholinechemistry.chemical_compoundSlice preparationBilobalideAnimalsCholineRats WistarGinkgolidesFuransHypoxia BrainMolecular BiologyPhospholipidsEC50biologyPlant ExtractsGinkgo bilobaGeneral NeuroscienceGinkgobiology.organism_classificationRatsPlant LeavesGinkgolidesLogistic ModelschemistryBiochemistryNeurology (clinical)DiterpenesEx vivoDevelopmental BiologyBrain Research
researchProduct