Search results for "Glass-transition"

showing 9 items of 9 documents

Anhydrobiosis: Inside yeast cells

2018

International audience; Under natural conditions yeast cells as well as other microorganisms are regularly subjected to the influence of severe drought, which leads to their serious dehydration. The dry seasons are then changed by rains and there is a restoration of normal water potential inside the cells. To survive such seasonal changes a lot of vegetative microbial cells, which belong to various genera and species, may be able to enter into a state of anhydrobiosis, in which their metabolism is temporarily and reversibly suspended or delayed. This evolutionarily developed adaptation to extreme conditions of the environment is widely used for practical goals - for conservation of microorg…

0106 biological scienceslipid-phaseCell Survivaldesiccation toleranceMicroorganismBiophysicsBioengineeringSaccharomyces cerevisiaeBiology01 natural sciencesApplied Microbiology and BiotechnologyDehydration-rehydrationDesiccation tolerance03 medical and health scienceswine yeastIntracellular protective reactions010608 biotechnology[SDV.IDA]Life Sciences [q-bio]/Food engineeringOrganelle[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineeringwater replacement hypothesisLaboratorium voor PlantenfysiologieDesiccationCryptobiosismembrane phase-transitions030304 developmental biology0303 health sciencesDehydrationWaterendoplasmic-reticulumplasma-membraneAnhydrobiosisYeastYeastDehydration–rehydrationYeast in winemaking[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyBiofysicaCellular MicroenvironmentIntracellular changesBiochemistryglass-transitioncandida-utilis cellsEPSAdaptationDesiccationsaccharomyces-cerevisiae cellsLaboratory of Plant PhysiologyBiotechnologyBiotechnology Advances
researchProduct

Beyond Biodegradability of Poly(lactic acid): Physical and Chemical Stability in Humid Environments

2017

International audience; Poly(lactic acid) (PLA) is the most traded biodegradable and biobased material. It is largely used as ecofriendly substitute of conventional plastics. Nevertheless, one of the main limiting factors is its water sensitivity. PLA reacts with water and is hydrolyzed during time, which determines its performance. Limited information related to the hydrolysis mechanism driven by water in vapor state is available in scientific literature. Literature is mainly focused on the effects of water in liquid state. This lack of information is of significant importance, since PLA interacts with water in both phases. This work was aimed to give a full depiction of the chemical and p…

AgingHydrolytic degradationPhosphate-buffered solutionGeneral Chemical EngineeringAmorphous fractions02 engineering and technologyPolylactide010402 general chemistry01 natural sciencesBioplasticHydrolysischemistry.chemical_compoundGlass-transition[SDV.IDA]Life Sciences [q-bio]/Food engineeringEnvironmental ChemistryOrganic chemistryRelative humidityRelative-humidityState of waterPoly(l-lactic acid)Renewable Energy Sustainability and the EnvironmentChemistryHydrolysisAmorphous phase[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringtechnology industry and agricultureGeneral ChemistryBiodegradationequipment and supplies021001 nanoscience & nanotechnology0104 chemical sciencesLactic acidBioplasticLactide copolymersPLADegradation (geology)Chemical stabilityIn-vitro degradation0210 nano-technologyGlass transitionACS Sustainable Chemistry & Engineering
researchProduct

Positronium as a probe in natural polymers: decomposition in starch

2009

Ortho-positronium (o-Ps) is used as a probe in positron annihilation lifetime spectroscopy (PALS) experiments, to characterise the behaviour of free volumes in natural starch samples, as a function of temperature (T). Up to about 540 K, the o-Ps intensity, I(3), remains constant at 26.2% while its lifetime, tau(3), is found to increase linearly. Both parameters undergo a decrease above this T, due to the onset of decomposition, which results in a shrinking of the sample pellets. The results indicate that the glass transition temperature should be above 501 K. Data from thermal gravimetry analysis (TGA) measurements are well described by supposing a first order process for the survival proba…

GLASS-TRANSITIONAnalytical chemistryGeneral Physics and AstronomyElectrons02 engineering and technologyActivation energy01 natural sciencesPositroniumNuclear magnetic resonance0103 physical sciencesPhysical and Theoretical ChemistrySpectroscopyThermal analysisBiological Products010304 chemical physicsChemistrySpectrum AnalysisTransition temperatureTemperatureStarchFREE-VOLUME021001 nanoscience & nanotechnology[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry[ CHIM.POLY ] Chemical Sciences/PolymersThermogravimetry[CHIM.POLY]Chemical Sciences/PolymersThermogravimetry[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistryVolume fraction0210 nano-technologyGlass transitionANNIHILATION LIFETIMEPhysical Chemistry Chemical Physics
researchProduct

Dynamics of myoglobin in confinement: An elastic and quasi-elastic neutron scattering study

2008

In order to clarify the role of hard confinement on protein dynamics, elastic and quasi-elastic neutron scattering experiments have been performed on ferric horse myoglobin in two different systems: the protein embedded in a porous silica matrix, and the corresponding hydrated protein powder. Elastic data have been analysed using two different models (dynamical heterogeneity and anharmonic double-well potential) that take into account deviations of elastic intensity from Gaussian behaviour. The profile of quasi-elastic spectra has been approximated by a combination of Lorentzian and Gaussian components. Comparison between the data relative to the two different samples indicates that geometr…

GLASS-TRANSITIONGaussianGeneral Physics and AstronomyHydrationNeutron scatteringSol–gelMYELIN BASIC-PROTEINMolecular physicsSpectral linesymbols.namesakechemistry.chemical_compoundDynamical heterogeneityPhysical and Theoretical ChemistryPorosityHEMOGLOBINSOLVENTQuantitative Biology::BiomoleculesProtein dynamicsAnharmonicitySolvent dynamicCrystallographyMyoglobinchemistrysymbolsProtein dynamicSilica hydrogels
researchProduct

Static Properties of a Simulated Supercooled Polymer Melt: Structure Factors, Monomer Distributions Relative to the Center of Mass, and Triple Correl…

2004

We analyze structural and conformational properties in a simulated bead-spring model of a non-entangled, supercooled polymer melt. We explore the statics of the model via various structure factors, involving not only the monomers, but also the center of mass (CM). We find that the conformation of the chains and the CM-CM structure factor, which is well described by a recently proposed approximation [Krakoviack et al., Europhys. Lett. 58, 53 (2002)], remain essentially unchanged on cooling toward the critical glass transition temperature of mode-coupling theory. Spatial correlations between monomers on different chains, however, depend on temperature, albeit smoothly. This implies that the g…

MODE-COUPLING THEORYMaterials scienceGLASS-TRANSITIONRELAXATION REGIMEpacs:61.20.JaThermodynamicsFOS: Physical sciencesCondensed Matter - Soft Condensed Matter01 natural sciencesTriple correlation010305 fluids & plasmasCOHERENT SCATTERINGchemistry.chemical_compoundHOVE CORRELATION-FUNCTIONS0103 physical sciencesddc:530010306 general physicsSupercoolingStaticsCHAIN-FOLDED STRUCTURESchemistry.chemical_classificationQuantitative Biology::BiomoleculesPolymerMOLECULAR-DYNAMICS SIMULATIONPACS: 61.25.Hq 61.20.JaCondensed Matter::Soft Condensed MatterMonomerchemistrypacs:61.25.HqLENNARD-JONES SYSTEMBETA-RELAXATIONSoft Condensed Matter (cond-mat.soft)PHASE-TRANSITIONSCenter of massGlass transitionStructure factor[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft]
researchProduct

Myoglobin embedded in saccharide amorphous matrices: water-dependent domains evidenced by small angle X-ray scattering

2010

We report Small Angle X-ray Scattering (SAXS) measurements performed on samples of carboxy-myoglobin (MbCO) embedded in low-water trehalose glasses. Results showed that, in such samples, "low-protein" trehalose-water domains are present, surrounded by a protein-trehalose-water background; such finding is supported by Infrared Spectroscopy (FTIR) measurements. These domains, which do not appear in the absence of the protein and in analogous sucrose systems, preferentially incorporate the incoming water at the onset of rehydration, and disappear following large hydration. This observation suggests that, in organisms under anhydrobiosis, analogous domains could play a buffering role against th…

Photosynthetic reaction centreSucroseGLASS-TRANSITIONGeneral Physics and AstronomyInfrared spectroscopyRhodobacter sphaeroideschemistry.chemical_compoundRhodobacter sphaeroidesScattering Small AngleSpectroscopy Fourier Transform InfraredPHOSPHOLIPID-BILAYERREACTION CENTERSPhysical and Theoretical ChemistrySettore CHIM/02 - Chimica FisicabiologyScatteringSmall-angle X-ray scatteringMyoglobinTrehaloseWaterbiology.organism_classificationPROTEIN DYNAMICSTrehaloseMOLECULAR-DYNAMICS SIMULATIONAmorphous solidCrystallographyMyoglobinchemistryTHERMAL-DENATURATIONNEUTRON-SCATTERINGCARBOXY-MYOGLOBINEXTERNAL MATRIXTREHALOSE-COATED MBCO
researchProduct

Dynamics of Uniaxial Hard Ellipsoids

2007

We study the dynamics of monodisperse hard ellipsoids via a new event-driven molecular dynamics algorithm as a function of volume fraction $\phi$ and aspect ratio $X_0$. We evaluate the translational $D_{trans}$ and the rotational $D_{rot}$ diffusion coefficient and the associated isodiffusivity lines in the $\phi-X_0$ plane. We observe a decoupling of the translational and rotational dynamics which generates an almost perpendicular crossing of the $D_{trans}$ and $D_{rot}$ isodiffusivity lines. While the self intermediate scattering function exhibits stretched relaxation, i.e. glassy dynamics, only for large $\phi$ and $X_0 \approx 1$, the second order orientational correlator $C_2(t)$ sho…

PhysicsScattering functionCondensed matter physicsPlane (geometry)GLASS-TRANSITIONPHASEFOS: Physical sciencesGeneral Physics and AstronomyOrder (ring theory)Context (language use)Condensed Matter - Soft Condensed MatterEllipsoidSIMULATIONSGLASS-TRANSITION; HARD ELLIPSOIDS; EVENT-DRIVEN SIMULATIONS; MOLECULAR MODE COUPLING THEORYNuclear magnetic resonanceLIQUIDSPARTICLESSoft Condensed Matter (cond-mat.soft)Relaxation (physics)Rotational dynamicsPhysical Review Letters
researchProduct

2D dynamical arrest transition in a mixed nanoparticle-phospholipid layer studied in real and momentum spaces

2015

AbstractWe investigate the interfacial dynamics of a 2D self-organized mixed layer made of silica nanoparticles interacting with phospholipid (DPPC) monolayers at the air/water interface. This system has biological relevance, allowing investigation of toxicological effects of nanoparticles on model membranes and lung surfactants. It might also provide bio-inspired technological solutions, exploiting the self-organization of DPPC to produce a non-trivial 2D structuration of nanoparticles. The characterization of interfacial dynamics yields information on the effects of NPs on the mechanical properties, important to improve performances of systems such as colloidosomes, foams, creams. For thi…

Surface PropertiesComputer sciencePhospholipidNanoparticleRELAXATIONCOLLOIDOSOMESRespiratory physiologySurface pressureArticleMomentumchemistry.chemical_compoundPhase (matter)MonolayerParticle SizeSILICA NANOPARTICLESPhospholipidsBrownian motionSimulation[PHYS]Physics [physics]MultidisciplinaryAirRelaxation (NMR)WaterPulmonary SurfactantsModels TheoreticalSilicon DioxideSURFACTANTCharacterization (materials science)MembranechemistryChemical physicsNanoparticlesWater chemistryParticle sizeCOLLOIDAL GLASS-TRANSITIONAlgorithmsScientific Reports
researchProduct

Toward Sustainable PLA-Based Multilayer Complexes with Improved Barrier Properties

2019

Poly(lactic acid) or PLA is currently considered as one of the most promising substitutes of conventional plastics, with low environmental impact, especially for food packaging applications. Nevertheless, some drawbacks, such as high permeability to oxygen, are still limiting its industrial applications. The objective of this study was to highly increase the oxygen barrier performance of PLA without compromising its sustainable nature and following the principles of circular economy perspective. Coproducts coming from mill industries, such as wheat gluten proteins (WG), were used to produce PLA-WG-PLA multilayer complexes with improved barrier performance. Different technologies of industri…

plastic materialCorona treatment[SDV]Life Sciences [q-bio]General Chemical EngineeringHot-pressingWheat glutenemballage alimentaire02 engineering and technologyHot pressing01 natural sciencesOXYGEN[SPI]Engineering Sciences [physics]CARBON-DIOXIDEchemistry.chemical_compoundSurface modificationWheat glutenPolylactic acidCoatingComputingMilieux_MISCELLANEOUSPOLY(LACTIC ACID)Spin coatingsustainable developmentplastiqueANTIMICROBIAL PROPERTIES021001 nanoscience & nanotechnologyFood packagingdéveloppement durableBiobased and biodegradable polymers0210 nano-technologyMaterials scienceWATER-VAPOR BARRIERGLASS-TRANSITIONPROTEIN ISOLATESpin coatingNanotechnologyengineering.materialFILMS010402 general chemistry12. Responsible consumptionPoly(lactic acid) PLAEnvironmental ChemistryEFFICIENT GASRenewable Energy Sustainability and the EnvironmentPOLYLACTIC ACIDHigh-pressure homogenizationCorona treatmentGeneral Chemistry0104 chemical scienceschemistryengineeringSurface modificationacide lactiqueACS Sustainable Chemistry & Engineering
researchProduct