Search results for "Glomeraceae"

showing 2 items of 2 documents

Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi

2021

Made available in DSpace on 2021-06-25T11:52:41Z (GMT). No. of bitstreams: 0 Previous issue date: 2021-03-04 European Regional Development Fund (Centre of Excellence EcolChange) University of Tartu (Estonian Research Council ) Moscow State University Natural Sciences and Engineering Research Council of Canada Discovery Grant Russian Science Foundation Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Swedish Research Council (Vetenskapsradet) The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 s…

0106 biological sciences0301 basic medicinearbuscular mycorrhizal fungi ecological niche molecular taxa niche optimum niche width pH phylogenetic correlation temperature Ecosystem Fungi Hydrogen-Ion Concentration Phylogeny Soil Soil Microbiology Temperature MycorrhizaePhylogéniePhysiologyPlant Science01 natural sciencesSoilhttp://aims.fao.org/aos/agrovoc/c_5963http://aims.fao.org/aos/agrovoc/c_33550MycorrhizaePhylogenySoil MicrobiologyAbiotic componentbiologyEcologypHTemperatureHydrogen-Ion ConcentrationPhytoécologieniche widthTempérature du solpH de la rhizosphèreF40 - Écologie végétaleAcaulosporaceaeNichearbuscular mycorrhizal fungi03 medical and health scienceshttp://aims.fao.org/aos/agrovoc/c_1415699873241Glomeraceaeecological nichehttp://aims.fao.org/aos/agrovoc/c_13325Relative species abundanceChampignon du solArbuscular mycorrhiza [EN]EcosystemEcological nichehttp://aims.fao.org/aos/agrovoc/c_5b384c25phylogenetic correlationFungiP34 - Biologie du solmolecular taxatemperatureAquatic Ecologyfacteurs abiotiques15. Life on landbiology.organism_classificationniche optimum030104 developmental biology13. Climate actionBiological dispersalhttp://aims.fao.org/aos/agrovoc/c_7197http://aims.fao.org/aos/agrovoc/c_36313010606 plant biology & botanyGigasporaceae
researchProduct

Effects of environmental and temporal factors on Glomeromycotina spores in sand dunes along the Gulf of Valencia (Spain)

2019

Abstract AMF symbiosis in sand dunes is the key for maintenance of stable vegetation. The main goal of this work was to determine the effects of environmental and temporal factors on AMF living in sand dunes (Gulf of Valencia, Spain). Soil samples were collected seasonally at 6 sites, during 2 yrs, from three habitats and four plant species and the frequency and relative abundance of AMF was examined. AMF were more frequent in mobile than in embryonic dunes, in spring and in sites with old vegetation. Ten AMF species were identified, their distribution depending mainly on the anthropogenic disturbance of the site. Gigasporaceae Cetraspora sp. and Dentiscutata sp. preferred undisturbed soil …

0106 biological sciencesMediterranean climateEcologybiologyEcologyEcological ModelingPlant ScienceVegetationbiology.organism_classification010603 evolutionary biology01 natural sciencesSand dune stabilizationGlomeraceaeHabitatSoil waterRelative species abundanceEcology Evolution Behavior and Systematics010606 plant biology & botanyGigasporaceaeFungal Ecology
researchProduct