Search results for "Glutamatergic"

showing 10 items of 98 documents

Salsolinol and ethanol-derived excitation of dopamine mesolimbic neurons: new insights

2013

Evidence supporting the essential role of brain-derived ethanol metabolites in the excitation of dopamine (DA) midbrain neurons has multiplied in the last 10–15 years. The pioneer and influential behavioral studies by CM Aragon and colleagues (see Correa et al., 2012 for a complete review) and more recent data (Sanchez-Catalan et al., 2009; Marti-Prats et al., 2010, 2013) have repeatedly demonstrated the crucial role displayed by acetaldehyde (ACD) in the locomotor and other behavioral responses elicited by ethanol. Although these experiments mainly used an indirect measure (exploratory locomotion) as an index of the excitation of DA neurons in the ventral tegmental area (VTA), results stro…

Cognitive NeuroscienceAcetaldehydeStriatumInhibitory postsynaptic potentiallcsh:RC321-571Behavioral NeuroscienceGlutamatergicDopaminemedicinePremovement neuronal activitylcsh:Neurosciences. Biological psychiatry. NeuropsychiatryGeneral Commentary ArticleSalsolinolElectrophysiologyVentral tegmental areaµ-Opioid ReceptorsElectrophysiologyNeuropsychology and Physiological Psychologymedicine.anatomical_structurenervous systemHypothalamusDopamine Midbrain NeuronsPsychologyNeuroscienceNeurosciencemedicine.drugFrontiers in Behavioral Neuroscience
researchProduct

Cellular Mechanisms of Subplate-Driven and Cholinergic Input-Dependent Network Activity in the Neonatal Rat Somatosensory Cortex

2008

Early coordinated network activity promotes the development of cortical structures. Although these early activity patterns have been recently characterized with respect to their developmental, spatial and dynamic properties, the cellular mechanisms by which specific neuronal populations trigger coordinated activity in the neonatal cerebral cortex are still poorly understood. Here we characterize the cellular and molecular processes leading to generation of network activity during early postnatal development. We show that the somatosensory cortex of newborn rats expresses cholinergic-driven calcium transients which are synchronized within the deeply located subplate. Correspondingly, endogen…

Cognitive NeuroscienceBiologyNeurotransmissionSomatosensory systemSynaptic Transmissiongamma-Aminobutyric acidCellular and Molecular NeuroscienceGlutamatergicBiological ClocksSubplatemedicineAnimalsCalcium SignalingRats WistarCells Culturedgamma-Aminobutyric AcidNeuronsDepolarizationSomatosensory CortexAcetylcholineRatsmedicine.anatomical_structureAnimals NewbornCerebral cortexGABAergicNerve NetNeurosciencemedicine.drugCerebral Cortex
researchProduct

Coincident glutamatergic depolarizations enhance GABAA receptor-dependent Cl- influx in mature and suppress Cl- efflux in immature neurons.

2021

The impact of GABAergic transmission on neuronal excitability depends on the Cl--gradient across membranes. However, the Cl--fluxes through GABAA receptors alter the intracellular Cl- concentration ([Cl-]i) and in turn attenuate GABAergic responses, a process termed ionic plasticity. Recently it has been shown that coincident glutamatergic inputs significantly affect ionic plasticity. Yet how the [Cl-]i changes depend on the properties of glutamatergic inputs and their spatiotemporal relation to GABAergic stimuli is unknown. To investigate this issue, we used compartmental biophysical models of Cl- dynamics simulating either a simple ball-and-stick topology or a reconstructed CA3 neuron. Th…

Databases FactualPhysiologyNervous SystemBiochemistrySynaptic TransmissionAnimal CellsMedicine and Health SciencesCl effluxBiology (General)Receptorgamma-Aminobutyric AcidNeuronsNeuronal PlasticityEcologyNeuronal MorphologyGABAA receptorChemistryPyramidal CellsNeurochemistryNeurotransmittersCA3 Region HippocampalElectrophysiologymedicine.anatomical_structureComputational Theory and MathematicsModeling and SimulationGABAergicAnatomyCellular TypesReceptor PhysiologyIntracellularResearch ArticleCell PhysiologyQH301-705.5Models NeurologicalNeurophysiologyMembrane PotentialCellular and Molecular NeuroscienceGlutamatergicChloridesGeneticsmedicineAnimalsMolecular BiologyEcology Evolution Behavior and SystematicsBiology and Life SciencesComputational BiologyCell BiologyNeuronal DendritesReceptors GABA-ACellular NeuroscienceSynapsesCa3 pyramidal neuronDepolarizationNeuronNeuroscienceNeurosciencePLoS Computational Biology
researchProduct

Separation of presynaptic Cav2 and Cav1 channel function in synaptic vesicle exo- and endocytosis by the membrane anchored Ca2+ pump PMCA

2021

Significance Synaptic vesicle (SV) release from presynaptic terminals requires nanometer precise control of action potential (AP)–triggered calcium influx through voltage-gated calcium channels (VGCCs). SV recycling also depends on calcium signals, though in different spatiotemporal domains. Mechanisms for separate control of SV release and recycling by AP-triggered calcium influx remain elusive. Here, we demonstrate largely independent regulation of release and recycling by two different populations of VGCCs (Cav2, Cav1), identify Cav1 as one of potentially multiple calcium entry routes for endocytosis regulation, and show functional separation of simultaneous calcium signals in the nanome…

Drosophila ; Dmca1D ; cacophony ; PMCA ; synapse0301 basic medicine570ATPasecacophonyPresynaptic TerminalsAction PotentialsEndocytosisDmca1DSynaptic vesicleExocytosis03 medical and health scienceschemistry.chemical_compoundGlutamatergicPlasma Membrane Calcium-Transporting ATPases0302 clinical medicinePMCAsynapsemedicineAnimalsDrosophila ProteinsAxonNeurotransmitterProbabilityMotor NeuronsMultidisciplinaryVoltage-dependent calcium channelbiologyCell Membrane424500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; BiologieBiological SciencesEndocytosisCell biologyElectrophysiology030104 developmental biologymedicine.anatomical_structureDrosophila melanogasterchemistryReceptors Glutamatebiology.proteinDrosophilaCalciumCalcium ChannelsSynaptic Vesicles030217 neurology & neurosurgeryNeuroscienceProceedings of the National Academy of Sciences of the United States of America
researchProduct

Pre- and postsynaptic type-1 cannabinoid receptors control the alterations of glutamate transmission in experimental autoimmune encephalomyelitis

2013

Type-1 cannabinoid receptors (CB1R) are important regulators of the neurodegenerative damage in multiple sclerosis (MS) and in experimental autoimmune encephalomyelitis (EAE). In GABAergic striatal neurons, CB1R stimulation exerts protective effects by limiting inflammation-induced potentiation of glutamate-mediated spontaneous excitatory postsynaptic currents (sEPSCs). Here we show that CB1R located on GABAergic or on glutamatergic neurons are differentially involved in the pre- and postsynaptic alterations of sEPSCs caused by EAE in the striatum. After induction of EAE, mice selectively lacking CB1R on GABAergic neurons (GABA-CB1R-KO) showed exacerbated alterations of sEPSC duration in GA…

Encephalomyelitis Autoimmune ExperimentalTime FactorsPostsynaptic CurrentPresynaptic TerminalsExcitotoxicityGlutamic AcidIn Vitro TechniquesBiologyMedium spiny neuronmedicine.disease_causeSynaptic TransmissionMiceCellular and Molecular NeuroscienceGlutamatergicReceptor Cannabinoid CB1Postsynaptic potentialmedicineAnimalsgamma-Aminobutyric AcidMice KnockoutNeuronsPharmacologyExperimental autoimmune encephalomyelitisGlutamate receptorExcitatory Postsynaptic Potentialsmedicine.diseaseCorpus StriatumMice Inbred C57BLnervous systemDisease ProgressionExcitatory postsynaptic potentialFemaleSettore MED/26 - NeurologiaNeuroscience
researchProduct

Mutant Plasticity Related Gene 1 (PRG1) acts as a potential modifier in SCN1A related epilepsy

2018

ABSTRACTPlasticity related gene 1 encodes a cerebral neuron-specific synaptic transmembrane protein that modulates hippocampal excitatory transmission on glutamatergic neurons. In mice, homozygous Prg1-deficiency results in juvenile epilepsy. Screening a cohort of 18 patients with infantile spasms (West syndrome), we identified one patient with a heterozygous mutation in the highly conserved third extracellular phosphatase domain (p.T299S). The functional relevance of this mutation was verified by in-utero electroporation of a mutant Prg1 construct into neurons of Prg1-knockout embryos, and the subsequent inability of hippocampal neurons to rescue the knockout phenotype on the single cell l…

EpilepsyMutationGlutamatergicMutantWild typemedicineHippocampal formationBiologymedicine.diseasemedicine.disease_causePhenotypeMolecular biologyExome sequencing
researchProduct

Comparison of spike parameters from optically identified GABAergic and glutamatergic neurons in sparse cortical cultures

2015

We are pleased to note that our publication “Comparison of spike parameters from optically identified GABAergic and glutamatergic neurons in sparse cortical cultures” by Weir et al. (2015) raised some discussion on the feasibility of solely electrophysiological discrimination of distinct neuronal subpopulations in vitro. We agree with Becchetti and Wanke (2015) that their report and our study on the same question were conducted with different technical approaches and that this may explain the observed differences between both studies. Although we obviously recorded a reduced spontaneous neuronal activity under our sparse culture conditions, these conditions were necessary to enable the uneq…

Fano factorinterneuronsGeneral Commentaryspike waveformimagingmulti-electrode arrayBiologynetwork activityInhibitory postsynaptic potentiallcsh:RC321-571Cellular and Molecular NeuroscienceElectrophysiologyGlutamatergicmedicine.anatomical_structureneuronal cultureSpike sortingmedicineExcitatory postsynaptic potentialPremovement neuronal activityNeuronlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryNeuroscienceNeuroscienceFrontiers in Cellular Neuroscience
researchProduct

GABA transporters control GABAergic neurotransmission in the mouse subplate.

2015

The subplate is a transient layer between the cortical plate and intermediate zone in the developing cortex. Thalamo-cortical axons form temporary synapses on subplate neurons (SPns) before invading the cortical plate. Neuronal activity within the subplate is of critical importance for the development of neocortical circuits and architecture. Although both glutamatergic and GABAergic inputs on SPns were reported, short-term plasticity of GABAergic transmission has not been investigated yet. GABAergic postsynaptic currents (GPSCs) were recorded from SPns in coronal neocortical slices prepared from postnatal day 3-4 mice using whole-cell patch-clamp technique. Evoked GPSCs (eGPSCs) elicited b…

GABA Plasma Membrane Transport ProteinsGABA Plasma Membrane Transport ProteinsPatch-Clamp TechniquesGABAB receptorBiologyNeurotransmissionSynaptic Transmissiongamma-Aminobutyric acidTissue Culture TechniquesGlutamatergicSubplatemedicinePremovement neuronal activityAnimalsgamma-Aminobutyric AcidGeneral NeuroscienceSomatosensory CortexSynaptic PotentialsReceptors GABA-AElectric StimulationMice Inbred C57BLmedicine.anatomical_structureReceptors GABA-BGABAergicNeurosciencemedicine.drugCentral Nervous System AgentsNeuroscience
researchProduct

Presynaptic nitric oxide/cGMP facilitates glutamate release via hyperpolarization-activated cyclic nucleotide-gated channels in the hippocampus

2011

In hippocampal neurons, synaptic transmission is affected by a variety of modulators, including nitric oxide (NO), which was proposed as a retrograde messenger as long as two decades ago. NO signals via two NO-sensitive guanylyl cyclases (NO-GCs) (NO-GC1 and NO-GC2) and the subsequent increase in cGMP. Lack of long-term potentiation in mice deficient in either one of the two NO-GCs demonstrates the involvement of both NO-GCs in synaptic transmission. However, the physiological consequences of NO/cGMP and the cellular mechanisms involved are unknown. Here, we analyzed glutamatergic synaptic transmission, most likely reflecting glutamate release, in the hippocampal CA1 region of NO-GC knockou…

General NeuroscienceGlutamate receptorLong-term potentiationHyperpolarization (biology)BiologyNeurotransmissionNitric oxideCell biologychemistry.chemical_compoundGlutamatergicBiochemistrychemistryRetrograde signalingSoluble guanylyl cyclaseEuropean Journal of Neuroscience
researchProduct

Coincident glutamatergic depolarizations enhance GABAA receptor-dependent Cl- influx in mature and suppress Cl- efflux in immature neurons

2020

AbstractThe impact of GABAergic transmission on neuronal excitability depends on the Cl−-gradient across membranes. However, the Cl−-fluxes through GABAA receptors alter the intracellular Cl− concentration ([Cl−]i) and in turn attenuate GABAergic responses, a process termed ionic plasticity. Recently it has been shown that coincident glutamatergic inputs significantly affect ionic plasticity. Yet how the [Cl−]i changes depend on the properties of glutamatergic inputs and their spatiotemporal relation to GABAergic stimuli is unknown. To investigate this issue, we used compartmental biophysical models of Cl− dynamics simulating either a simple ball-and-stick topology or a reconstructed immatu…

Glutamatergicmedicine.anatomical_structureChemistryGABAA receptormedicineExcitatory postsynaptic potentialGABAergicDepolarizationNeuronReceptorNeuroscienceIonotropic effect
researchProduct