Search results for "Glycosylase"
showing 10 items of 53 documents
First extensive characterization of the venom gland from an egg parasitoid: structure, transcriptome and functional role.
2018
The venom gland is a ubiquitous organ in Hymenoptera. In insect parasitoids, the venom gland has been shown to have multiple functions including regulation of host immune response, host paralysis, host castration and developmental alteration. However, the role played by the venom gland has been mainly studied in parasitoids developing in larval or pupal hosts while little is known for parasitoids developing in insect eggs. We conducted the first extensive characterization of the venom of the endoparasitoid Ooencyrtus telenomicida (Vassiliev), a species that develops in eggs of the stink bug Nezara viridula (L.). In particular we investigated the structure of the venom apparatus, its functio…
A common SNP in the UNG gene decreases ovarian cancer risk in BRCA2 mutation carriers
2018
Single nucleotide polymorphisms (SNPs) in DNA glycosylase genes involved in the base excision repair (BER) pathway can modify breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We previously found that SNP rs34259 in the uracil-DNA glycosylase gene (UNG) might decrease ovarian cancer risk in BRCA2 mutation carriers. In the present study, we validated this finding in a larger series of familial breast and ovarian cancer patients to gain insights into how this UNG variant exerts its protective effect. We found that rs34259 is associated with significant UNG downregulation and with lower levels of DNA damage at telomeres. In addition, we found that this SNP is associated with…
2016
DNA damage can significantly modulate expression of the affected genes either by direct structural interference with transcription components or as a collateral outcome of cellular repair attempts. Thus, DNA glycosylases of the base excision repair (BER) pathway have been implicated in negative transcriptional response to several spontaneously generated DNA base modifications, including a common oxidative DNA base modification 8-oxoguanine (8-oxoG). Here, we report that single 8-oxoG situated in the non-transcribed DNA strand of a reporter gene has a pronounced negative effect on transcription, driven by promoters of various strength and with different structural properties, including viral…
Role of the DNA repair glycosylase OGG1 in the activation of murine splenocytes
2017
OGG1 (8-oxoguanine-DNA glycosylase) is the major DNA repair glycosylase removing the premutagenic DNA base modification 8-oxo-7,8-dihydroguanine (8-oxoG) from the genome of mammalian cells. In addition, there is accumulating evidence that OGG1 and its substrate 8-oxoG might function in the regulation of certain genes, which could account for an attenuated immune response observed in Ogg1-/- mice in several settings. Indications for at least two different mechanisms have been obtained. Thus, OGG1 could either act as an ancillary transcription factor cooperating with the lysine-specific demethylase LSD1 or as an activator of small GTPases. Here, we analysed the activation by lipopolysaccaride…
Oxidatively generated base modifications in DNA: Not only carcinogenic risk factor but also regulatory mark?
2016
The generation of DNA modifications in cells is in most cases accidental and associated with detrimental consequences such as increased mutation rates and an elevated risk of malignant transformation. Accordingly, repair enzymes involved in the removal of the modifications have primarily a protective function. Among the well-established exceptions of this rule are 5-methylcytosine and uracil, which are generated in DNA enzymatically under controlled conditions and fulfill important regulatory functions in DNA as epigenetic marks and in antibody diversification, respectively. More recently, considerable evidence has been obtained that also 8-oxo-7,8-dihydroguanine (8-oxoG), a frequent pro-mu…
Regulation of GC box activity by 8-oxoguanine
2021
The oxidation-induced DNA modification 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) was recently implicated in the activation and repression of gene transcription. We aimed at a systematic characterisation of the impacts of 8-oxodG on the activity of a GC box placed upstream from the RNA polymerase II core promoter. With the help of reporters carrying single synthetic 8-oxodG residues at four conserved G:C base pairs (underlined) within the 5′-TGGGCGGAGC-3′ GC box sequence, we identified two modes of interference of 8-oxodG with the promoter activity. Firstly, 8-oxodG in the purine-rich (but not in the pyrimidine-rich) strand caused direct impairment of transcriptional activation. In addit…
Functional impacts of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine at a single hemi-modified CpG dinucleotide in a gene promoter
2017
Abstract Enzymatic oxidation of 5-methylcytosine (5-mC) in the CpG dinucleotides to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-fC) and 5-carboxycytosine (5-caC) has central role in the process of active DNA demethylation and epigenetic reprogramming in mammals. However, it is not known whether the 5-mC oxidation products have autonomous epigenetic or regulatory functions in the genome. We used an artificial upstream promoter constituted of one cAMP response element (CRE) to measure the impact of 5-mC in a hemi-methylated CpG on the promoter activity and further explored the consequences of 5-hmC, 5-fC, and 5-caC in the same system. All modifications induced mild impairment of the …
2020
Abstract One of the most abundant DNA lesions induced by oxidative stress is the highly mutagenic 8-oxoguanine (8-oxoG), which is specifically recognized by 8-oxoguanine DNA glycosylase 1 (OGG1) to initiate its repair. How DNA glycosylases find small non-helix-distorting DNA lesions amongst millions of bases packaged in the chromatin-based architecture of the genome remains an open question. Here, we used a high-throughput siRNA screening to identify factors involved in the recognition of 8-oxoG by OGG1. We show that cohesin and mediator subunits are required for re-localization of OGG1 and other base excision repair factors to chromatin upon oxidative stress. The association of OGG1 with e…
Occupational exposure to metal-rich particulate matter modifies the expression of repair genes in foundry workers
2021
Foundry workers are exposed to numerous occupational health hazards, which may result in increased risk of cancer, respiratory disease, and other diseases. Oxidative stress is known to be involved in the pathogenesis of such diseases. The present study aimed to investigate the association between multiple occupational exposures in foundry workers and expression of deoxyribonucleic acid (DNA) repair genes as a biomarker of oxidative DNA damage. The study sample comprised 17 foundry workers and 27 matched control subjects. Expression of 8-oxoguanine DNA glycosylase-1 (OGG1), inosine triphosphate pyrophosphate (ITPA), and MutT homolog 1 (MTH1) in peripheral blood was examined using the real-t…
Transgenic systems in studies on genotoxicity of alkylating agents: critical lesions, thresholds and defense mechanisms
1998
Abstract Transgenic systems, both cell lines and mice with gain or loss of function, are being used in order to modulate the expression of DNA repair proteins, thus allowing to assess their contribution to the defense against genotoxic mutagens and carcinogens. In this review, questions have been addressed concerning the use of transgenic systems in elucidating critical primary DNA lesions, their conversion into genotoxic endpoints, low-dose effects, and the relative contribution of individual cellular functions in defense. It has been shown that the repair protein alkyltransferase (MGMT) is decisive for protection against methylating and chloroethylating compounds. Protection pertains also…