Search results for "Glycosylase"

showing 10 items of 53 documents

First extensive characterization of the venom gland from an egg parasitoid: structure, transcriptome and functional role.

2018

The venom gland is a ubiquitous organ in Hymenoptera. In insect parasitoids, the venom gland has been shown to have multiple functions including regulation of host immune response, host paralysis, host castration and developmental alteration. However, the role played by the venom gland has been mainly studied in parasitoids developing in larval or pupal hosts while little is known for parasitoids developing in insect eggs. We conducted the first extensive characterization of the venom of the endoparasitoid Ooencyrtus telenomicida (Vassiliev), a species that develops in eggs of the stink bug Nezara viridula (L.). In particular we investigated the structure of the venom apparatus, its functio…

0106 biological sciences0301 basic medicinePhysiologyGlycosylasesWaspsVenomLaccasesHymenopteraInsectmelanization01 natural sciencesvirulence factorParasitoidTranscriptomePhysiological suppressionLaboratory of EntomologyArthropod Venomsmedia_commonLarvabiologyVirulence factorsPhenotypeNezara viridulalaccazesInsect ProteinsFemaleMelanizationmedia_common.quotation_subjectZoologycomplex mixturesHost-Parasite InteractionsHeteroptera03 medical and health sciencesglycosylasesExocrine GlandsMicroscopy Electron TransmissionAnimalsPeptidaseHost (biology)Laccasefungibiology.organism_classificationLaboratorium voor Entomologiephysiological suppression010602 entomology030104 developmental biologySettore AGR/11 - Entomologia Generale E ApplicatapeptidasesInsect ScienceEPS[SDE.BE]Environmental Sciences/Biodiversity and EcologyPeptidasesTranscriptomeGlycosylaseJournal of insect physiology
researchProduct

A common SNP in the UNG gene decreases ovarian cancer risk in BRCA2 mutation carriers

2018

Single nucleotide polymorphisms (SNPs) in DNA glycosylase genes involved in the base excision repair (BER) pathway can modify breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We previously found that SNP rs34259 in the uracil-DNA glycosylase gene (UNG) might decrease ovarian cancer risk in BRCA2 mutation carriers. In the present study, we validated this finding in a larger series of familial breast and ovarian cancer patients to gain insights into how this UNG variant exerts its protective effect. We found that rs34259 is associated with significant UNG downregulation and with lower levels of DNA damage at telomeres. In addition, we found that this SNP is associated with…

0301 basic medicineCancer Researchmedicine.medical_specialtyendocrine system diseasesUracil-DNA glycosylaseEuropean Regional Development Fundlcsh:RC254-282Polymorphism Single Nucleotide03 medical and health sciences0302 clinical medicineBRCA2 MutationRisk FactorsPolitical scienceHealthy volunteersGeneticsmedicineHumansSNPGenetic Predisposition to DiseaseUracil-DNA Glycosidaseskin and connective tissue diseasesResearch ArticlesBRCA2 ProteinOvarian NeoplasmsNetwork onOxidative stress susceptibilityGeneral MedicineMiddle Agedlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.diseaseBRCA2female genital diseases and pregnancy complicationsuracil‐DNA glycosylase030104 developmental biologyCancer risk modifierOncology030220 oncology & carcinogenesisFamily medicineMutationMolecular MedicineDNA damageFemaleChristian ministryTelomere damageOvarian cancerHuman cancerResearch Article
researchProduct

2016

DNA damage can significantly modulate expression of the affected genes either by direct structural interference with transcription components or as a collateral outcome of cellular repair attempts. Thus, DNA glycosylases of the base excision repair (BER) pathway have been implicated in negative transcriptional response to several spontaneously generated DNA base modifications, including a common oxidative DNA base modification 8-oxoguanine (8-oxoG). Here, we report that single 8-oxoG situated in the non-transcribed DNA strand of a reporter gene has a pronounced negative effect on transcription, driven by promoters of various strength and with different structural properties, including viral…

0301 basic medicineDNA repairDNA damagePromoterBase excision repairBiologyMolecular biology03 medical and health sciences030104 developmental biologyEpigenetics of physical exerciseDNA glycosylaseGeneticsDNA supercoilNucleotide excision repairNucleic Acids Research
researchProduct

Role of the DNA repair glycosylase OGG1 in the activation of murine splenocytes

2017

OGG1 (8-oxoguanine-DNA glycosylase) is the major DNA repair glycosylase removing the premutagenic DNA base modification 8-oxo-7,8-dihydroguanine (8-oxoG) from the genome of mammalian cells. In addition, there is accumulating evidence that OGG1 and its substrate 8-oxoG might function in the regulation of certain genes, which could account for an attenuated immune response observed in Ogg1-/- mice in several settings. Indications for at least two different mechanisms have been obtained. Thus, OGG1 could either act as an ancillary transcription factor cooperating with the lysine-specific demethylase LSD1 or as an activator of small GTPases. Here, we analysed the activation by lipopolysaccaride…

0301 basic medicineGuanineDNA RepairDNA repairp38 mitogen-activated protein kinasesBiologyBiochemistryDNA GlycosylasesMice03 medical and health sciencesAnimalsMolecular BiologyTranscription factorTumor Necrosis Factor-alphaKinaseActivator (genetics)MacrophagesDNACell BiologyBase excision repairMolecular biology030104 developmental biologyGene Expression RegulationDNA glycosylaseTumor necrosis factor alphaSpleenDNA DamageTranscription FactorsDNA Repair
researchProduct

Oxidatively generated base modifications in DNA: Not only carcinogenic risk factor but also regulatory mark?

2016

The generation of DNA modifications in cells is in most cases accidental and associated with detrimental consequences such as increased mutation rates and an elevated risk of malignant transformation. Accordingly, repair enzymes involved in the removal of the modifications have primarily a protective function. Among the well-established exceptions of this rule are 5-methylcytosine and uracil, which are generated in DNA enzymatically under controlled conditions and fulfill important regulatory functions in DNA as epigenetic marks and in antibody diversification, respectively. More recently, considerable evidence has been obtained that also 8-oxo-7,8-dihydroguanine (8-oxoG), a frequent pro-mu…

0301 basic medicineGuanineDNA RepairTranscription GeneticDNA repairCarcinogenesisBiochemistryDNA GlycosylasesEpigenesis Genetic03 medical and health sciencesRisk FactorsPhysiology (medical)NeoplasmsAnimalsGuanine Nucleotide Exchange FactorsHumansProtein–DNA interactionTranscription factor030102 biochemistry & molecular biologybiologyBase excision repairDNAProliferating cell nuclear antigenOxidative Stress030104 developmental biologyHistoneBiochemistryDNA glycosylasebiology.proteinOxidation-ReductionNucleotide excision repairSignal TransductionFree radical biologymedicine
researchProduct

Regulation of GC box activity by 8-oxoguanine

2021

The oxidation-induced DNA modification 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) was recently implicated in the activation and repression of gene transcription. We aimed at a systematic characterisation of the impacts of 8-oxodG on the activity of a GC box placed upstream from the RNA polymerase II core promoter. With the help of reporters carrying single synthetic 8-oxodG residues at four conserved G:C base pairs (underlined) within the 5′-TGGGCGGAGC-3′ GC box sequence, we identified two modes of interference of 8-oxodG with the promoter activity. Firstly, 8-oxodG in the purine-rich (but not in the pyrimidine-rich) strand caused direct impairment of transcriptional activation. In addit…

0301 basic medicineMedicine (General)GuanineDNA RepairQH301-705.5Clinical BiochemistryCAAT box8-OxoguanineRNA polymerase IIBiochemistryDNA GlycosylasesAP endonuclease03 medical and health sciencesR5-9200302 clinical medicineGene expressionDNA-(Apurinic or Apyrimidinic Site) LyaseAP siteBiology (General)AP lesionbiologyChemistryOrganic ChemistryPromoterBase excision repairMolecular biologyGC boxBase excision repair (BER)030104 developmental biologyDNA glycosylasebiology.protein8-Oxoguanine DNA Glycosylase (OGG1)030217 neurology & neurosurgeryResearch PaperDNA DamageRedox Biology
researchProduct

Functional impacts of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine at a single hemi-modified CpG dinucleotide in a gene promoter

2017

Abstract Enzymatic oxidation of 5-methylcytosine (5-mC) in the CpG dinucleotides to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-fC) and 5-carboxycytosine (5-caC) has central role in the process of active DNA demethylation and epigenetic reprogramming in mammals. However, it is not known whether the 5-mC oxidation products have autonomous epigenetic or regulatory functions in the genome. We used an artificial upstream promoter constituted of one cAMP response element (CRE) to measure the impact of 5-mC in a hemi-methylated CpG on the promoter activity and further explored the consequences of 5-hmC, 5-fC, and 5-caC in the same system. All modifications induced mild impairment of the …

0301 basic medicineResponse elementCREB03 medical and health sciencesCytosine0302 clinical medicineGeneticsAnimalsHumansCyclic AMP Response Element-Binding ProteinPromoter Regions GeneticRegulation of gene expressionbiologyBase SequenceGene regulation Chromatin and EpigeneticsPromoterDNADNA MethylationThymine DNA GlycosylaseCell biology030104 developmental biologyDNA demethylationCpG siteGene Expression RegulationDNA glycosylaseDNA methylationbiology.protein5-MethylcytosineCpG Islands030217 neurology & neurosurgeryProtein BindingNucleic Acids Research
researchProduct

2020

Abstract One of the most abundant DNA lesions induced by oxidative stress is the highly mutagenic 8-oxoguanine (8-oxoG), which is specifically recognized by 8-oxoguanine DNA glycosylase 1 (OGG1) to initiate its repair. How DNA glycosylases find small non-helix-distorting DNA lesions amongst millions of bases packaged in the chromatin-based architecture of the genome remains an open question. Here, we used a high-throughput siRNA screening to identify factors involved in the recognition of 8-oxoG by OGG1. We show that cohesin and mediator subunits are required for re-localization of OGG1 and other base excision repair factors to chromatin upon oxidative stress. The association of OGG1 with e…

0303 health sciencesEuchromatinCohesinBase excision repairBiologyChromatinCell biology03 medical and health scienceschemistry.chemical_compound0302 clinical medicineMediatorchemistryDNA glycosylase030220 oncology & carcinogenesisGeneticsCyclin-dependent kinase 8DNA030304 developmental biologyNucleic Acids Research
researchProduct

Occupational exposure to metal-rich particulate matter modifies the expression of repair genes in foundry workers

2021

Foundry workers are exposed to numerous occupational health hazards, which may result in increased risk of cancer, respiratory disease, and other diseases. Oxidative stress is known to be involved in the pathogenesis of such diseases. The present study aimed to investigate the association between multiple occupational exposures in foundry workers and expression of deoxyribonucleic acid (DNA) repair genes as a biomarker of oxidative DNA damage. The study sample comprised 17 foundry workers and 27 matched control subjects. Expression of 8-oxoguanine DNA glycosylase-1 (OGG1), inosine triphosphate pyrophosphate (ITPA), and MutT homolog 1 (MTH1) in peripheral blood was examined using the real-t…

AdultMaleDNA repairThreshold limit valueHealth Toxicology and MutagenesisIran010501 environmental sciencesToxicologymedicine.disease_cause01 natural sciencesDNA Glycosylaseslaw.invention03 medical and health sciencesElectromagnetic FieldslawMetals HeavyOccupational ExposureHumansMedicinePyrophosphatasesGenePolymerase chain reaction030304 developmental biology0105 earth and related environmental sciences0303 health sciencesbusiness.industryPublic Health Environmental and Occupational HealthMiddle AgedPhosphoric Monoester HydrolasesOxidative StressDNA Repair EnzymesCase-Control StudiesMetallurgyImmunologyToxicityBiomarker (medicine)Particulate MatterITPAbusinessBiomarkersOxidative stressDNA DamageToxicology and Industrial Health
researchProduct

Transgenic systems in studies on genotoxicity of alkylating agents: critical lesions, thresholds and defense mechanisms

1998

Abstract Transgenic systems, both cell lines and mice with gain or loss of function, are being used in order to modulate the expression of DNA repair proteins, thus allowing to assess their contribution to the defense against genotoxic mutagens and carcinogens. In this review, questions have been addressed concerning the use of transgenic systems in elucidating critical primary DNA lesions, their conversion into genotoxic endpoints, low-dose effects, and the relative contribution of individual cellular functions in defense. It has been shown that the repair protein alkyltransferase (MGMT) is decisive for protection against methylating and chloroethylating compounds. Protection pertains also…

Alkylating AgentsDNA repairDNA polymeraseHealth Toxicology and MutagenesisTransgeneMice Transgenicmedicine.disease_causeCell LineMiceGeneticsmedicineAnimalsHumansMolecular BiologyGeneticsbiologyMutagenicity TestsNeoplasms ExperimentalBase excision repairDNA glycosylaseCancer researchbiology.proteinDNA mismatch repairGenotoxicityMutagensAlkyltransferaseMutation Research/Fundamental and Molecular Mechanisms of Mutagenesis
researchProduct