Search results for "Gmo"

showing 10 items of 156 documents

Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with …

2011

International audience; Neural networks trained over radiative transfer simulations constitute the basis of several operational algorithms to estimate canopy biophysical variables from satellite reflectance measurements. However, only little attention was paid to the training process which has a major impact on retrieval performances. This study focused on the several modalities of the training process within neural network estimation of LAI, FCOVER and FAPAR biophysical variables. Performances were evaluated over both actual experimental observations and model simulations. The SAIL and PROSPECT radiative transfer models were used here to simulate the training and the synthetic test dataset…

010504 meteorology & atmospheric sciencesComputer scienceGaussian0211 other engineering and technologiesSoil ScienceCANOPY BIOPHYSICAL CHARACTERISTICS02 engineering and technologyNEURAL NETWORK01 natural sciencesTransfer functionsymbols.namesakeAtmospheric radiative transfer codesRadiative transferRange (statistics)Sensitivity (control systems)Computers in Earth Sciences021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingArtificial neural networkGeologySigmoid functionRELATION SOL-PLANTE-ATMOSPHEREMODEL INVERSION[SDE]Environmental SciencessymbolsINDICE FOLIAIRE
researchProduct

Empirical and physical estimation of Canopy Water Content from CHRIS/PROBA data

2013

20 páginas, 4 tablas, 7 figuras.

010504 meteorology & atmospheric sciencesMean squared errorScience0211 other engineering and technologies02 engineering and technologyCHRIS/PROBA01 natural sciencescanopy water content;model inversion;neural networks;look up tables;empirical up-scalingmodel inversionEmpirical up-scalingAtmospheric radiative transfer codeslook up tablesRadiative transferModel inversion021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsRemote sensingArtificial neural networkCanopy water contentQHyperspectral imagingInversion (meteorology)Sigmoid functionSpectral bandsempirical up-scaling15. Life on landneural networks[SDE]Environmental SciencesGeneral Earth and Planetary SciencesLook up tablescanopy water contentNeural networkscanopy water content; model inversion; neural networks; look up tables; empirical up-scaling; CHRIS/PROBA
researchProduct

Aging parasites produce offspring with poor fitness prospects.

2017

Senescing individuals have poor survival prospects and low fecundity. They can also produce offspring with reduced survival and reproductive success. We tested the effect of parental age on the performance of descendants in the nematode Heligmosomoides polygyrus , an intestinal parasite of rodents. We found that offspring of senescing worms had reduced within-host survival and reduced egg shedding over the first month post-infection compared with offspring produced by young parents. These results suggest that declining offspring quality is a component of senescence in parasitic nematodes and might have evolutionary consequences for the optimal schedule of age-dependent investment into repr…

0106 biological sciences0301 basic medicineSenescence[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyTime FactorssenescenceOffspringLongevityIntestinal parasiteZoologyHeligmosomoides polygyrusBiologymedicine.disease_cause010603 evolutionary biology01 natural sciences03 medical and health sciencesMicemedicine[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisAnimals[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyStrongylida InfectionsEvolutionary BiologyNematospiroides dubius[ SDE.BE ] Environmental Sciences/Biodiversity and Ecologyoffspring fitnessReproductive successReproductionYoung parentsFecunditybiology.organism_classificationAgricultural and Biological Sciences (miscellaneous)infection030104 developmental biologyNematodeFertilityImmunologyFemaleHeligmosomoides polygyrus[SDE.BE]Environmental Sciences/Biodiversity and EcologyGeneral Agricultural and Biological Sciencesparental age[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

A mechanistic underpinning for sigmoid dose-dependent infection

2016

0106 biological sciences0301 basic medicineUnderpinningenvironmentally transmitted diseasesDose dependenceSigmoid functionBiology010603 evolutionary biology01 natural sciencesinfektiot03 medical and health sciences030104 developmental biologytartuntatauditta1181infectionsNeuroscienceEcology Evolution Behavior and SystematicsOikos
researchProduct

Assessment of genetically modified cotton GHB614 × LLCotton25 × MON 15985 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFS…

2018

The three-event stack cotton GHB614 x LLCotton25 x MON 15985 was produced by conventional crossing to combine three single cotton events, GHB614, LLCotton25 and MON 15985. The EFSA GMO Panel previously assessed the three single events and did not identify safety concerns. No new data on the single events that could lead to modification of the original conclusions on their safety were identified. Based on the molecular, agronomic, phenotypic and compositional characteristics, the combination of the single events and of the newly expressed proteins in the three-event stack cotton did not give rise to food and feed safety or nutritional issues. Food and feed derived from cotton GHB614 x LLCott…

0106 biological sciences0301 basic medicineVeterinary (miscellaneous)[SDV]Life Sciences [q-bio]Plant ScienceTP1-1185Biology01 natural sciencesMicrobiology03 medical and health sciencesEnvironmental safetyNPTIIGUSCry1AcTX341-641cotton GHB614 × LLCotton25 × MON 15985Cry2Ab2cotton GHB614 x LLCotton25 x MON 159852. Zero hungerAnimal healthbusiness.industryNutrition. Foods and food supplyGMOChemical technologyRegulation (EC) 1829/2003Food safetyGenetically modified organismBiotechnologySettore AGR/02 - Agronomia E Coltivazioni ErbaceeScientific Opinion030104 developmental biologySettore AGR/11 - Entomologia Generale E ApplicataAnimal Science and ZoologyParasitologyGMO; cotton GHB614 x LLCotton25 x MON 15985; Regulation (EC) 1829/2003; Cry1Ac; Cry2Ab2; GUS; NPTII; 2mEPSPS; PATbusiness2mEPSPSPAT010606 plant biology & botanyFood Science
researchProduct

Assessment of genetically modified maize MON 87403 for food and feed uses, import and processing, under Regulation (EC) No 1829/2003 (application EFS…

2018

GMO; maize (Zea mays); MON 87403; ear biomass; Regulation (EC) No 1829/2003; International audience; aize MON 87403 was developed to increase ear biomass at early reproductive phase through the expression of a modified AtHB17 gene from Arabidopsis thaliana, encoding a plant transcription factor of the HD-Zip II family. The molecular characterisation data and bioinformatic analyses did not identify issues requiring assessment for food and feed safety. No statistically significant differences in the agronomic and phenotypic characteristics tested between maize MON 87403 and its conventional counterpart were identified. The compositional analysis of maize MON 87403 did not identify differences…

0106 biological sciences0301 basic medicineVeterinary (miscellaneous)[SDV]Life Sciences [q-bio]Plant ScienceTP1-1185GMO; maize (Zea mays); MON 87403; ear biomass; Regulation (EC) No 1829/2003Biologyear biomass01 natural sciencesMicrobiologyMON 87403[SHS]Humanities and Social Sciences03 medical and health sciencesEnvironmental safetyear bioma[SDV.IDA]Life Sciences [q-bio]/Food engineering[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyTX341-641MON 87403[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineeringmaize (Zea mays)2. Zero hungerGenetically modified maizeAnimal healthbusiness.industryNutrition. Foods and food supplyGMOChemical technologyfungiRegulation (EC) No 1829/2003maize (Zea mays)Food safetyBiotechnologySettore AGR/02 - Agronomia E Coltivazioni Erbacee030104 developmental biologyScientific OpinionSettore AGR/11 - Entomologia Generale E Applicata[SDE]Environmental SciencesAnimal Science and ZoologyParasitologybusiness010606 plant biology & botanyFood ScienceRegulation (EC) No 1829/2003
researchProduct

Reaction norms of host immunity, host fitness and parasite performance in a mouse - intestinal nematode interaction.

2016

8 pages; International audience; The outcome of the encounter between a host and a parasite depends on the synergistic effects of the genetics of the two partners and the environment (sensulato) where the interaction takes place. Reaction norms can depict how host and parasite traits vary across environmental ranges for different genotypes. Here, we performed a large scale experiment where three strains of laboratory mice (SJL, BALB/c and CBA) were infected with four doses of the intestinal nematode Heligmosomoides polygyrus. An increasing infective dose can be considered as a proxy for the environment-dependent risk incontracting the infection. We looked at the fitness traits of hosts and …

0106 biological sciences0301 basic medicine[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyResistanceHeligmosomoides polygyrusBiologyPlant disease resistance010603 evolutionary biology01 natural sciencesHost-Parasite Interactions03 medical and health sciencesImmune systemImmunityGenotypeFitness[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisAnimalsParasite hosting[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyIntestinal Diseases ParasiticDisease ResistanceStrongylida InfectionsMice Inbred BALB CNematospiroides dubiusMus musculus domesticus[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyImmunitybiology.organism_classificationInterleukin 10030104 developmental biologyInfectious DiseasesParasitologySusceptibilityImmunologyMice Inbred CBACytokinesFemaleParasitologyHeligmosomoides polygyrus[SDE.BE]Environmental Sciences/Biodiversity and EcologyReaction normsTolerance[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

Assessment of genetically modified maize 4114 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐NL‐2014‐123)

2018

Abstract Maize 4114 was developed through Agrobacterium tumefaciens‐mediated transformation to provide protection against certain lepidopteran and coleopteran pests by expression of the Cry1F, Cry34Ab1 and Cry35Ab1 proteins derived from Bacillus thuringiensis, and tolerance to the herbicidal active ingredient glufosinate‐ammonium by expression of the PAT protein derived from Streptomyces viridochromogenes. The molecular characterisation data did not identify issues requiring assessment for food/feed safety. None of the compositional, agronomic and phenotypic differences identified between maize 4114 and the non‐genetically modified (GM) comparator(s) required further assessment. There were …

0106 biological sciences4114herbicide toleranceAgrobacteriumCry1F[SDV]Life Sciences [q-bio]Veterinary (miscellaneous)Cry34Ab1Context (language use)4114; Cry1F; Cry34Ab1; Cry35Ab1; GMO; herbicide tolerance; insect-resistant; maize (Zea mays); PAT; Regulation (EC) No 1829/2003TP1-1185Plant Science010501 environmental sciences01 natural sciencesMicrobiologyBacillus thuringiensisinsect‐resistantinsect-resistantTX341-641maize (Zea mays)0105 earth and related environmental sciences2. Zero hungerGenetically modified maizeAnimal healthbiologyNutrition. Foods and food supplyGMObusiness.industryChemical technologyCry35Ab1Regulation (EC) No 1829/2003maize (Zea mays)biology.organism_classificationGenetically modified organismBiotechnologyTransformation (genetics)Scientific Opinion13. Climate actionAnimal Science and ZoologyParasitologybusinessCry 1FPATRegulation (EC) No 1829/2003010606 plant biology & botanyFood SciencePotential toxicity
researchProduct

Assessment of genetically modified soybean MON 87751 for food and feed uses under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐NL‐2014‐121)

2018

Abstract Soybean MON 87751 was developed through Agrobacterium tumefaciens‐mediated transformation to provide protection certain specific lepidopteran pests by the expression of the Cry1A.105 and Cry2Ab2 proteins derived from Bacillus thuringiensis. The molecular characterisation data and bioinformatic analyses did not identify issues requiring assessment for food and feed safety. None of the compositional, agronomic and phenotypic differences identified between soybean MON 87751 and the conventional counterpart required further assessment. The GMO Panel did not identify safety concerns regarding the toxicity and allergenicity of the Cry1A.105 and Cry2Ab2 proteins as expressed in soybean MO…

0106 biological sciencesCry1AVeterinary (miscellaneous)Plant ScienceTP1-1185Biology01 natural sciencesMicrobiologyGenetically modified soybeansoybean (Glycinemax)MON877510404 agricultural biotechnologyEnvironmental safetyBacillus thuringiensisTX341-641Cry2Ab2Cry1A.105Animal healthbusiness.industryGMONutrition. Foods and food supplyChemical technologyfungiRegulation (EC) No 1829/2003food and beverages10504 agricultural and veterinary sciencesbiology.organism_classification040401 food scienceBiotechnologySettore AGR/02 - Agronomia E Coltivazioni ErbaceeSettore AGR/11 - Entomologia Generale E ApplicataScientific OpinionMON 87751insect resistantAnimal Science and ZoologyParasitologybusinesssoybean (Glycine max)010606 plant biology & botanyFood ScienceRegulation (EC) No 1829/2003EFSA Journal
researchProduct

Scientific Opinion on application EFSA‐GMO‐BE‐2013‐117 for authorisation of genetically modified maize MON 87427 × MON 89034 × NK603 and subcombinati…

2017

Scientific opinionRequestor: Competent Authority of BelgiumQuestion number: EFSA-Q-2013-00765; In this opinion, the EFSA Panel on Genetically Modified Organisms (GMO Panel) assessed the three-event stack maize MON 87427 9 MON 89034 9 NK603 and its three subcombinations, independently of their origin. The GMO Panel has previously assessed the three single events combined to produce this three-event stack maize and did not identify safety concerns. No new data on the single events, leading to modification of the original conclusions on their safety, were identified. Based on the molecular, agronomic, phenotypic and compositional characteristics, the combination of the single maize events and …

0106 biological sciencesCry1Aherbicide tolerancemaïsVeterinary (miscellaneous)gmo[SDV]Life Sciences [q-bio]MON87427xMON89034xNK603ogmPlant Science010501 environmental sciencesmaizeCP4EPSPS01 natural sciencesMicrobiologyzea maysMON 87427 × MON 89034 × NK603Cry2Ab2CP4 EPSPS0105 earth and related environmental sciences2. Zero hungerCP4 EPSPSCry1A.105indian cornRegulation (EC) No 1829/2003105GMO;maize;herbicide tolerance;insect resistance;CP4 EPSPS;Cry1A.105;Cry2Ab2;Regulation (EC) No 1829/2003;MON 87427 x MON 89034 x NK603MON 87427 9 MON 89034 9 NK603Scientific OpinionRegulation (EC) No1829/2003Animal Science and ZoologyParasitologyinsect resistance010606 plant biology & botanyFood ScienceRegulation (EC) No 1829/2003
researchProduct