Search results for "Gradation"
showing 10 items of 1275 documents
Importance of surface tension characterization for food, pharmaceutical and packaging products: a review.
2006
This article reviews the various theoretical approaches that have been developed for determination of the surface tension of solids, and the applications to food industrial products. The surface tension of a solid is a characteristic of surface properties and interfacial interactions such as adsorption, wetting or adhesion. The knowledge of surface tension is thus of great interest for every domain involved in understanding these mechanisms, which recover a lot of industrial investigations. Indeed, it is the case for the packaging industry, the food materials science, the biomedical applications and the pharmaceutical products, cleaning, adhesive technology, painting, coating and more gener…
Investigation of the Temperature Sensitivity of 20-Years Old Field-Aged Photovoltaic Panels Affected by Potential Induced Degradation
2022
One effect of moisture ingress on solar panels is potential induced degradation (PID). Solar panels affected by PID experience large leakage currents between the solar cells and the module’s frame, which leads to substantial power degradation. In the present work, the temperature coefficients of 3 old PV panels affected by PID were investigated. In the electroluminescence images, solar cells nearer to the edge of the modules appear darker due to ohmic shunting. IR thermal images acquired under clear sky outdoor conditions show that the majority of the warmer cells (hotspots) were located closer to the edge of the modules. The difference in cell temperature (∆T) due to PID effect…
Biodegradation of Synthetic Organic Compounds by Methanogenic Microbiome as an Alternative Approach for Wastewater Purification and Energy Production
2022
The use of fossil fuels (methane, oil, etc.) is undergoing an unprecedented crisis now. There is the urgent need to search for alternative energy sources. A wide range of degraded organic materials can be effectively used to provide energy together with environmental protection. Soapstock is a hazardous waste containing a high concentration of toxic organic compounds of man-made origin (fatty acids, surfactants, dyes, etc.). To prevent environmental contamination such substances require an effective treatment approach. The goal of the study was to isolate the adapted-to-fatty-acids methanogenic microbiome and investigate the patterns of sodium acetate and soapstock degradation with simultan…
Structural and surface characterization of the polycrystalline system CrxOy · TiO2 employed for photoreduction of dinitrogen and photodegradation of …
1992
The polycrystalline system CrxOy-TiO2, used as a catalyst for photoreactions, was studied by X-ray diffractometric method, visible-ultraviolet diffuse reflectance and infrared spectroscopic methods, surface area determination, and porosimetry to characterize its structural and surface features. Two series of catalysts were prepared by two different methods, namely by coprecipitation and by impregnation. The first series was tested as photocatalysts for the dinitrogen photoreduction in a gas-solid regime and for the phenol photodegradation in a liquid-solid regime. The results indicate that the interaction of chromium ions with OH groups modifies the surface properties of the supports and co…
Poplar rotation coppice at a trace element-contaminated phytomanagement site: A 10-year study revealing biomass production, element export and impact…
2019
Abstract Growing lignocellulosic crops on marginal lands could compose a substantial proportion of future energy resources. The potential of poplar was explored, by devising a field trial of two hectares in 2007 in a metal-contaminated site to quantify the genotypic variation in the growth traits of 14 poplar genotypes grown in short-rotation coppice and to assess element transfer and export by individual genotypes. Our data led us to conclusions about the genotypic variations in poplar growth on a moderately contaminated site, with the Vesten genotype being the most productive. This genotype also accumulated the least amounts of trace elements, whereas the Trichobel genotype accumulated up…
Hydrolysis and microbial community analyses in two-stage anaerobic digestion of energy crops
2007
Aims: The roles of the diverse populations of micro-organisms responsible for biodegradation of organic matter to form methane and carbon dioxide are rudimentarily understood. To expand the knowledge on links between microbial communities and the rate limiting, hydrolytic stage of two-stage biogas production from energy crops, this study was performed. Methods and Results: The process performance. and microbial communities (as determined by fluorescence in situ hybridization) in two separate two-stage batch digestions of sugar beets and grass/clover were studied. The microbial populations developed in the hydrolytic stage of anaerobic digestion of beets and grass/clover showed very few simi…
Two-Stage Anaerobic Digestion of Energy Crops: Methane Production, Nitrogen Mineralisation and Heavy Metal Mobilisation
2006
Energy crops (willow, sugar beet and grass silage) were digested in pilot scale two-stage anaerobic digesters. The specific methane yields obtained were 0.16, 0.38 and 0.39 m3 kg(-1) added volatile solids (VSadded) for willow, sugar beet and grass, respectively, corresponding to yearly gross energy yields of 15, 53 and 26 megawatt-hours (MWh) per hectare. With grass and sugar beets as substrate, 84-85% of the harvestable methane was obtained within 30 days. In pilot scale two-stage digestion of willow and sugar beet, 56 and 85% of the laboratory scale methane yields were obtained, but digestion of grass in two-stage reactors yielded 5% more methane than digestion in laboratory scale complet…
Long- and short-term in vitro D-dimer stability measured with INNOVANCE D-Dimer.
2009
Summary In vitro D-dimer stability in plasma is widely assumed, but has not yet been documented by systematic studies using samples covering a wide range of D-dimer. We investigated the short- and long-term stability of D-dimer in clinical citrated plasma samples with normal and pathological levels. The short-term stability was analysed by measuring D-dimer fresh, after storage of plasma for 4 hours at room temperature (RT) and after an additional 24 h storage at +2 to +8°C (n=40). Long-term stability samples (n=40) were measured fresh and after storage for 19, 25 and 36 months at ≤-60°C. The effect of repeated freezing was analysed by measuring samples (n=50) fresh and after four consecuti…
Phosphorus NMR as a tool to study mineralization of organophosphonates—The ability of Spirulina spp. to degrade glyphosate
2007
Abstract A commercially available mixed culture of Spirulina spp. exhibited a remarkable ability to degrade the widely used organophosphorus herbicide glyphosate, that served as sole source of either phosphorus or nitrogen for cyanobacterial growth. 31P NMR analysis of spent media appeared to be an effective and simple technique to follow disappearance of the phosphonate and release of inorganic phosphate in biodegradation process(es).
Bilayer biodegradable films prepared by co-extrusion film blowing: Mechanical performance, release kinetics of an antimicrobial agent and hydrolytic …
2020
Abstract Bilayer biodegradable, eco-friendly films were prepared by co-extrusion film blowing, coupling polylactic acid (PLA) and Bio-flex ® (BIO). Furthermore, in the PLA layer, carvacrol (CRV) was added as a natural antimicrobial additive, whereas a nanoclay (D72T) was integrated to protect CRV from volatilization and to modulate release. The materials were analyzed by morphological, chemical-physical, mechanical testing. Furthermore, CRV release and degradation tests were performed. The results pointed out that coupling the two matrices allows gathering the stiffness of PLA with the ductility of BIO. Furthermore, the interlayer adhesion is promoted by CRV. D72T exerts a key-role in avoid…