Search results for "Graphe"

showing 10 items of 563 documents

Scritture dimenticate, scritture colonizzate: sistemi grafici e codifiche digitali

2020

L'articolo discute due esempi di come le attuali tecnologie di codifica digitale rappresentino in modo errato gli script non occidentali, in particolare i sistemi grafici dell'India (Devánāgarī) e del Medio Oriente (arabo). Le codifiche digitali come Unicode ereditano tre rigidi principi dalla stampa: (A) 1 ↔ 1, un grafema corrisponde a una lettera; (B) 1 = 1, tutti i grafemi (es. Vocali, consonanti) hanno lo stesso stato; (C) 1, 2, 3…, la scrittura è una sequenza di elementi tutti sullo stesso "livello". Questi principi, tuttavia, non si applicavano ai sistemi grafici europei medievali scritti a mano e non si applicano oggi a quelli non occidentali, compresa la loro versione stampata. In D…

Cultural CriticismDigital HumanitiesGraphematicsUnicodeSettore L-FIL-LET/05 - Filologia ClassicaStudi culturaliInformatica Umanistica Grafematica Unicode
researchProduct

THERMOMECHANICAL DEGRADATION OF A POLYPROPYLENE/GRAPHENE NANOCOMPOSITE

2016

In this work the morphology and the rheological and mechanical properties of a nanocomposite made of a polypropylene with graphene nanoplatelets (GNP) have been investigated as a function of the compounding parameters to evaluate the thermomechanical degradation behaviour of this system. The presence of graphene seems to reduce the thermomechanical degradation of the matrix. A better dispersion of the GNP seems the cause of this behaviour.

DEGRADATION POLYPROPYLENE/GRAPHENE
researchProduct

Anomalous transport effects on switching currents of graphene-based Josephson junctions

2017

We explore the effect of noise on the ballistic graphene-based small Josephson junctions in the framework of the resistively and capacitively shunted model. We use the non-sinusoidal current-phase relation specific for graphene layers partially covered by superconducting electrodes. The noise induced escapes from the metastable states, when the external bias current is ramped, give the switching current distribution, i.e. the probability distribution of the passages to finite voltage from the superconducting state as a function of the bias current, that is the information more promptly available in the experiments. We consider a noise source that is a mixture of two different types of proce…

DYNAMICSJosephson effectJosephson junctionsGaussianFOS: Physical sciencesgraphemeBioengineering01 natural sciencesNoise (electronics)Settore FIS/03 - Fisica Della Materia010305 fluids & plasmaslaw.inventionsymbols.namesakelawJosephson junction0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Graphene; Josephson junctions; Levy processes; Non-thermal noise; Bioengineering; Chemistry (all); Materials Science (all); Mechanics of Materials; Mechanical Engineering; Electrical and Electronic EngineeringMechanics of MaterialGeneral Materials ScienceElectrical and Electronic Engineering010306 general physicsPhysicsSuperconductivityLevy processesCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsGrapheneMechanical EngineeringSTABLE RANDOM-VARIABLESChemistry (all)Non-thermal noiseBiasingGeneral ChemistryGraphene; Josephson junctions; Levy processes; Non-thermal noise; STABLE RANDOM-VARIABLES; DYNAMICSLevy processeMechanics of MaterialsPhysics - Data Analysis Statistics and ProbabilitysymbolsProbability distributionMaterials Science (all)GrapheneTransport phenomenaData Analysis Statistics and Probability (physics.data-an)
researchProduct

Time-dependent Landauer-Büttiker formula: Application to transient dynamics in graphene nanoribbons

2014

In this work we develop a time-dependent extension of the Landauer-B\"uttiker approach to study transient dynamics in time-dependent quantum transport through molecular junctions. A key feature of the approach is that it provides a closed integral expression for the time-dependence of the density matrix of the molecular junction after switch-on of a bias or gate potential which can be evaluated without the necessity of propagating individual single-particle orbitals. This allows for the study of time-dependent transport in large molecular systems coupled to wide band leads. As an application of the formalism we study the transient dynamics of zigzag and armchair graphene nanoribbons of diff…

Density matrixPhysicsta114Condensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsOscillationFermi levelCondensed Matter PhysicsSettore FIS/03 - Fisica della MateriaElectronic Optical and Magnetic MaterialsDensity wave theorysymbols.namesakeZigzagAtomic orbitalBallistic conductionsymbolsGraphene nanoribbonsPhysical Review B
researchProduct

Optically Forged Diffraction-Unlimited Ripples in Graphene

2018

In nanofabrication, just as in any other craft, the scale of spatial details is limited by the dimensions of the tool at hand. For example, the smallest details for direct laser writing with far-field light are set by the diffraction limit, which is approximately half of the used wavelength. In this work, we overcome this universal assertion by optically forging graphene ripples that show features with dimensions unlimited by diffraction. Thin sheet elasticity simulations suggest that the scaled-down ripples originate from the interplay between substrate adhesion, in-plane strain, and circular symmetry. The optical forging technique thus offers an accurate way to modify and shape two-dimens…

DiffractionLetterMaterials scienceta221FOS: Physical sciencesPhysics::Opticsnanotekniikka02 engineering and technology01 natural sciencesForginglaw.inventionResonatornanorakenteetlawMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesgrafeeniGeneral Materials SciencePhysical and Theoretical Chemistry010306 general physicsta116PlasmonCondensed Matter - Mesoscale and Nanoscale Physicsta114business.industryGraphenegraphene021001 nanoscience & nanotechnologyLaseroptical forgingWavelengthNanolithographyOptoelectronics0210 nano-technologybusinessJournal of Physical Chemistry Letters
researchProduct

Shaping graphene with optical forging: from a single blister to complex 3D structures

2020

Properties of graphene, such as electrical conduction and rigidity can be tuned by introducing local strain or defects into its lattice. We used optical forging, a direct laser writing method, under an inert gas atmosphere, to produce complex 3D patterns of single layer graphene. We observed bulging of graphene out of the plane due to defect induced lattice expansion. By applying low peak fluences, we obtained a 3D-shaped graphene surface without either ablating it or deforming the underlying Si/SiO2 substrate. We used micromachining theory to estimate the single-pulse modification threshold fluence of graphene, which was 8.3 mJ cm−2, being an order of magnitude lower than the threshold for…

DiffractionMaterials scienceBioengineering02 engineering and technologySubstrate (electronics)010402 general chemistry01 natural sciencesFluencesähkönjohtavuusForginglaw.inventionsymbols.namesakelawgrafeenimedicineGeneral Materials Sciencebusiness.industryGrapheneGeneral EngineeringBlistersGeneral Chemistry021001 nanoscience & nanotechnologyAtomic and Molecular Physics and Optics0104 chemical sciencesSurface micromachiningsymbolsOptoelectronicsmedicine.symptom0210 nano-technologybusinessRaman spectroscopyNanoscale Advances
researchProduct

Density Functional Theory Investigation on the Nucleation of Homo- and Heteronuclear Metal Clusters on Defective Graphene

2016

Nucleation of homo- (Ni, Pd, Re, Pt) and heterometallic (Ni–Pd, Re–Pt) clusters on monovacancy sites of a graphene sheet has been investigated by means of periodic density functional theory calculations. It is shown that a vacant site in graphene is an effective nucleation center for both the monometallic and bimetallic clusters, whose characteristics are described in terms of structural distortions, nucleation energetics, affinities between different metal atoms, metal–carbon interactions, and ease of diffusion of metal atoms on graphene.

DiffusionNucleationSurfaces Coatings and Film02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionMetalComputational chemistrylawPhysical and Theoretical ChemistryBimetallic stripChemistryGrapheneElectronic Optical and Magnetic Material021001 nanoscience & nanotechnologyAffinities0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergyEnergy (all)Heteronuclear moleculeChemical physicsvisual_artvisual_art.visual_art_mediumDensity functional theory0210 nano-technology
researchProduct

Microscopic theory for the light-induced anomalous Hall effect in graphene

2019

We employ a quantum Liouville equation with relaxation to model the recently observed anomalous Hall effect in graphene irradiated by an ultrafast pulse of circularly polarized light. In the weak-field regime, we demonstrate that the Hall effect originates from an asymmetric population of photocarriers in the Dirac bands. By contrast, in the strong-field regime, the system is driven into a non-equilibrium steady state that is well-described by topologically non-trivial Floquet-Bloch bands. Here, the anomalous Hall current originates from the combination of a population imbalance in these dressed bands together with a smaller anomalous velocity contribution arising from their Berry curvature…

Dirac (software)PopulationFOS: Physical sciences02 engineering and technology01 natural sciencesSettore FIS/03 - Fisica Della Materialaw.inventionlawHall effect0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicseducationQuantumPhysicseducation.field_of_studyCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsGrapheneRelaxation (NMR)dissipation021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectFloquet topologyBerry connection and curvatureMicroscopic theory0210 nano-technologyPhysics - OpticsOptics (physics.optics)Physical Review B
researchProduct

Electrochemical detection of dopamine with negligible interference from ascorbic and uric acid by means of reduced graphene oxide and metals-NPs base…

2021

Abstract Dopamine is an important neurotransmitter involved in many human biological processes as well as in different neurodegenerative diseases. Monitoring the concentration of dopamine in biological fluids, i.e., blood and urine is an effective way of accelerating the early diagnosis of these types of diseases. Electrochemical sensors are an ideal choice for real-time screening of dopamine as they can achieve fast, portable inexpensive and accurate measurements. In this work, we present electrochemical dopamine sensors based on reduced graphene oxide coupled with Au or Pt nanoparticles. Sensors were developed by co-electrodeposition onto a flexible substrate, and a systematic investigati…

Dopaminechemistry.chemical_elementMetal NanoparticlesNanotechnologyAscorbic AcidPlatinum nanoparticlesBiochemistryAnalytical Chemistrylaw.inventionlawSettore ING-IND/17 - Impianti Industriali MeccaniciEnvironmental ChemistryHumansElectrodesSpectroscopyPlatinumDetection limitChemistryGrapheneSubstrate (chemistry)Electrochemical TechniquesUric AcidSettore ING-IND/23 - Chimica Fisica ApplicataLinear rangeColloidal goldElectrodeGraphiteGoldDopamine Electrochemical sensor Graphene oxide Metal nanoparticles Neurodegenerative disease UrinePlatinumAnalytica chimica acta
researchProduct

Electrochemical reduction of graphene oxide and its in situ spectroelectrochemical characterization

2012

The electrochemical properties of self-assembled films of graphene oxide (GO) on mercaptoethylamine (MEA) modified rough Au-surfaces were studied. The film deposition process on MEA primed gold was followed by surface plasmon resonance measurements and the film morphology on 3-aminopropyltriethoxysilane primed Si(100)-surface was studied by atomic force microscopy. The deposited few layer thick GO films on gold were electrochemically reduced by cyclic voltammetry simultaneously as the structural changes in the film were recorded by in situ vibrational spectroscopies. In situ surface enhanced infrared spectroscopy results indicate that the effect of the applied potential on the GO structure …

Double layer (biology)Materials scienceGrapheneAnalytical chemistryOxideGeneral Physics and AstronomyInfrared spectroscopyElectrochemistrylaw.inventionchemistry.chemical_compoundChemical engineeringchemistrylawPhysical and Theoretical ChemistryCyclic voltammetrySurface plasmon resonanceLayer (electronics)
researchProduct