Search results for "Graphics"
showing 10 items of 1223 documents
SIMULATING SPIN MODELS ON GPU: A TOUR
2012
The use of graphics processing units (GPUs) in scientific computing has gathered considerable momentum in the past five years. While GPUs in general promise high performance and excellent performance per Watt ratios, not every class of problems is equally well suitable for exploiting the massively parallel architecture they provide. Lattice spin models appear to be prototypic examples of problems suitable for this architecture, at least as long as local update algorithms are employed. In this review, I summarize our recent experience with the simulation of a wide range of spin models on GPU employing an equally wide range of update algorithms, ranging from Metropolis and heat bath updates,…
A nonlinear algorithm for monotone piecewise bicubic interpolation
2016
We present an algorithm for monotone interpolation on a rectangular mesh.We use the sufficient conditions for monotonicity of Carlton and Fritsch.We use nonlinear techniques to approximate the partial derivatives at the grid points.We develop piecewise bicubic Hermite interpolants with these approximations.We present some numerical examples where we compare different results. In this paper we present an algorithm for monotone interpolation of monotone data on a rectangular mesh by piecewise bicubic functions. Carlton and Fritsch (1985) develop conditions on the Hermite derivatives that are sufficient for such a function to be monotone. Here we extend our results of Arandiga (2013) to obtain…
Computer-aided detection of cerebral microbleeds in susceptibility-weighted imaging.
2014
Susceptibility-weighted imaging (SWI) is recognized as the preferred MRI technique for visualizing cerebral vasculature and related pathologies such as cerebral microbleeds (CMBs). Manual identification of CMBs is time-consuming, has limited reliability and reproducibility, and is prone to misinterpretation. In this paper, a novel computer-aided microbleed detection technique based on machine learning is presented: First, spherical-like objects (potential CMB candidates) with their corresponding bounding boxes were detected using a novel multi-scale Laplacian of Gaussian technique. A set of robust 3-dimensional Radon- and Hessian-based shape descriptors within each bounding box were then ex…
Interactive simulation of one-dimensional flexible parts
2006
Computer simulations play an ever growing role for the development of automotive products. Assembly simulation, as well as many other processes, are used systematically even before the first physical prototype of a vehicle is built in order to check whether particular components can be assembled easily or whether another part is in the way. Usually, this kind of simulation is limited to rigid bodies. However, a vehicle contains a multitude of flexible parts of various types: cables, hoses, carpets, seat surfaces, insulations, weatherstrips... Since most of the problems using these simulations concern one-dimensional components and since an intuitive tool for cable routing is still needed, w…
Estimating the Best Reference Homography for Planar Mosaics From Videos
2015
This paper proposes a novel strategy to find the best reference homography in mosaics from video sequences. The reference homography globally minimizes the distortions induced on each image frame by the mosaic homography itself. This method is designed for planar mosaics on which a bad choice of the first reference image frame can lead to severe distortions after concatenating several successive homographies. This often happens in the case of underwater mosaics with non-flat seabed and no georeferential information available. Given a video sequence of an almost planar surface, sub-mosaics with low distortions of temporally close image frames are computed and successively merged according to…
JaxoDraw: A graphical user interface for drawing Feynman diagrams
2003
JaxoDraw is a Feynman graph plotting tool written in Java. It has a complete graphical user interface that allows all actions to be carried out via mouse click-and-drag operations in a WYSIWYG fashion. Graphs may be exported to postscript/EPS format and can be saved in XML files to be used in later sessions. One of the main features of JaxoDraw is the possibility to produce LaTeX code that may be used to generate graphics output, thus combining the powers of TeX/LaTeX with those of a modern day drawing program. With JaxoDraw it becomes possible to draw even complicated Feynman diagrams with just a few mouse clicks, without the knowledge of any programming language.
ATLAS TileCal Read Out Driver production
2007
The production tests of the 38 ATLAS TileCal Read Out Drivers (RODs) are presented in this paper. The hardware specifications and firmware functionality of the RODs modules, the test-bench and the test procedure to qualify the boards are described. Finally the performance results, the temperature studies and high rate tests are shown and discussed.
3D interactive model of lumbar spinal structures of anesthetic interest
2014
A 3D model of lumbar structures of anesthetic interest was reconstructed from human magnetic resonance (MR) images and embedded in a Portable Document Format (PDF) file, which can be opened by freely available software and used offline. The MR images were analyzed using a specific 3D software platform for biomedical data. Models generated from manually delimited volumes of interest and selected MR images were exported to Virtual Reality Modeling Language format and were presented in a PDF document containing JavaScript-based functions. The 3D file and the corresponding instructions and license files can be downloaded freely at http://diposit.ub.edu/dspace/handle/2445/44844?locale=en. The 3D…
Optical-sectioning microscopy by patterned illumination
2010
We propose a very simple method for the flexible production of 1D structured illumination for high resolution 3D microscopy. Specifically, we propose the insertion of a Fresnel biprism after a monochromatic point source for producing a pair of twin, fully coherent, virtual point sources. The resulting interference fringes are projected into the 3D sample and, by simply varying the distance between the biprism and the point source, one can tune the period of the fringes, while keeping their contrast, in a very versatile and efficient way.
A framework for vertex reconstruction in the ATLAS experiment at LHC
2010
In anticipation of the first LHC data to come, a considerable effort has been devoted to ensure the efficient reconstruction of vertices in the ATLAS detector. This includes the reconstruction of photon conversions, long lived particles, secondary vertices in jets as well as finding and fitting of primary vertices. The implementation of the corresponding algorithms requires a modular design based on the use of abstract interfaces and a common Event Data Model. An enhanced software framework addressing various physics applications of vertex reconstruction has been developed in the ATLAS experiment. Presented in this paper are the general principles of this framework. A particular emphasis is…