Search results for "Gravitational lensing"

showing 10 items of 43 documents

Neutrino halos in clusters of galaxies and their weak lensing signature

2011

We study whether non-linear gravitational effects of relic neutrinos on the development of clustering and large-scale structure may be observable by weak gravitational lensing. We compute the density profile of relic massive neutrinos in a spherical model of a cluster of galaxies, for several neutrino mass schemes and cluster masses. Relic neutrinos add a small perturbation to the mass profile, making it more extended in the outer parts. In principle, this non-linear neutrino perturbation is detectable in an all-sky weak lensing survey such as EUCLID by averaging the shear profile of a large fraction of the visible massive clusters in the universe, or from its signature in the general weak …

PhysicsCold dark matterCosmology and Nongalactic Astrophysics (astro-ph.CO)CosmologiaHigh Energy Physics::PhenomenologyFOS: Physical sciencesAstronomy and AstrophysicsObservableAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGalaxyBaryonGravitationNeutrinoWeak gravitational lensingGalaxy clusterAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Constraints on cosmological models from strong gravitational lensing systems

2012

Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structure, formation, and evolution). Using the gravitational lensing theory and cluster mass distribution model, we try to collect a relatively complete observational data concerning the Hubble constant independent ratio between two angular diameter distances $D_{ds}/D_s$ from various large systematic gravitational lens surveys and lensing by galaxy clusters combined with X-ray observations, and check the possibility to use it in the future as complementary to other cosmological probes. On one hand, strongly gravitationally lensed quasar-galaxy systems create such a new opportun…

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Strong gravitational lensingFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsCosmologyRedshiftEinstein radiussymbols.namesakeGravitational lenssymbolsDark energyGalaxy clusterAstrophysics - Cosmology and Nongalactic AstrophysicsHubble's lawJournal of Cosmology and Astroparticle Physics
researchProduct

Improving on numerical simulations of nonlinear CMB anisotropies

2015

An Adaptative-Particle-Particle-Particle-Mesh code (HYDRA) plus a ray-tracing procedure was used in [1] to perform an exhaustive analysis of the weak lensing anisotropy. Other nonlinear Cosmic Microwave Background anisotropies, such as the Rees-Sciamaand the Sunyaev-Zel.dovicheffects are also being studied by using the same tools. Here we present some advances in our study of these nonlinear anisotropies. The primary advance is due to the use of better simulations with greater particle densities and appropriate softening, although other parameters have also been adjusted to get better estimates. Thus, we improve on a previous paper [2] where the Rees-Sciamaeffect was studied with Particle-M…

PhysicsHistoryNonlinear systemCosmic microwave backgroundResolution improvementAstrophysics::Cosmology and Extragalactic AstrophysicsStatistical physicsFocus (optics)AnisotropySofteningWeak gravitational lensingComputer Science ApplicationsEducationJournal of Physics: Conference Series
researchProduct

A new stochastic approach to cumulative weak lensing

2009

We study the weak gravitational lensing effects caused by a stochastic distribution of dark matter halos. We develop a simple approach to calculate the magnification probability distribution function which allows us to easily compute the magnitude bias and dispersion for an arbitrary data sample and a given universe model. As an application we consider the effects of single-mass large-scale cosmic inhomogeneities to the SNe magnitude-redshift relation, and conclude that such structures could bias the PDF enough to affect the extraction of cosmological parameters from the limited size of present-day SNe data samples. We also release turboGL, a simple and very fast (<= 1s) Mathematica code…

PhysicsNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsmedia_common.quotation_subjectDark matterFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesUniverseGeneral Relativity and Quantum CosmologyRed shiftStochastic distributionDistribution (mathematics)Distribution functionObservational cosmologyQuantum mechanics0103 physical sciences010303 astronomy & astrophysicsWeak gravitational lensingMathematical physicsmedia_commonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Future weak lensing constraints in a dark coupled universe

2011

Coupled cosmologies can predict values for the cosmological parameters at low redshifts which may differ substantially from the parameters values within non-interacting cosmologies. Therefore, low redshift probes, as the growth of structure and the dark matter distribution via galaxy and weak lensing surveys constitute a unique tool to constrain interacting dark sector models. We focus here on weak lensing forecasts from future Euclid and LSST-like surveys combined with the ongoing Planck cosmic microwave background experiment. We find that these future data could constrain the dimensionless coupling to be smaller than a few $\times 10^{-2}$. The coupling parameter $\xi$ is strongly degener…

PhysicsNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Hot dark matterDark matterScalar field dark matterFísicaFOS: Physical sciencesLambda-CDM modelAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsCoupling (probability)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Dark energyWeak gravitational lensingDark fluidAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Weak Lensing Observables in the Halo Model

2011

The halo model (HM) describes the inhomogeneous universe as a collection of halos. The full nonlinear power spectrum of the universe is well approximated by the HM, whose prediction can be easily computed without lengthy numerical simulations. This makes the HM a useful tool in cosmology. Here we explore the lensing properties of the HM by use of the stochastic gravitational lensing (sGL) method. We obtain for the case of point sources exact and simple integral expressions for the expected value and variance of the lensing convergence, which encode detailed information about the internal halo properties. In particular a wide array of observational biases can be easily incorporated and the d…

PhysicsNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)ta114media_common.quotation_subjectStrong gravitational lensingGravitational lensing formalismFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)UniverseCosmologyGeneral Relativity and Quantum CosmologyGravitational lensClassical mechanicsDark energyStatistical physicsHaloWeak gravitational lensingmedia_commonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Current status of modified gravity

2014

We revisit the cosmological viability of the Hu-Sawicki modified gravity scenario. The impact of such a modification on the different cosmological observables, including gravitational waves, is carefully described. The most recent cosmological data, as well as constraints on the relationship between the clustering parameter ${\ensuremath{\sigma}}_{8}$ and the current matter mass-energy density ${\mathrm{\ensuremath{\Omega}}}_{m}$ from cluster number counts and weak lensing tomography, are considered in our numerical calculations. The strongest bound we find is $|{f}_{R0}|l3.7\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}$ at 95% C.L. Forthcoming cluster surveys covering $10\text{ …

PhysicsNuclear and High Energy PhysicsFísicaAstrophysics::Cosmology and Extragalactic AstrophysicsCosmological modelOmegaGalaxyCosmologyQuantum mechanicsAstronomiaGalaxy clusterWeak gravitational lensingMathematical physicsPhysical Review D
researchProduct

Accurate modeling of weak lensing with the stochastic gravitational lensing method

2011

We revise and extend the stochastic gravitational lensing method (the sGL method) first introduced by Kainulainen and Marra [Phys. Rev. D 80, 123020 (2009)]. Here we include a realistic halo-mass function and density profiles to model the distribution of mass between and within galaxies, galaxy groups, and galaxy clusters. We also introduce a modeling of the filamentary large-scale structures and a method to embed halos into these structures. We show that the sGL method naturally reproduces the weak lensing results for the Millennium simulation. The strength of the sGL method is that a numerical code based on it can compute the lensing probability distribution function (PDF) for a given inh…

PhysicsNuclear and High Energy Physicsmedia_common.quotation_subjectStrong gravitational lensingGravitational lensing formalismAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsGalaxyUniverseGravitational lensJoint Dark Energy MissionWeak gravitational lensingGalaxy clustermedia_commonPhysical Review D
researchProduct

Integral field spectroscopy of the gravitational lens HE1104-1805

2004

We present integral field spectroscopy of the double imaged quasar HE1104-1805 taken with the optical fiber system INTEGRAL-WYFFOS at theWHT telescope. From the spectra of the two components we have measured the continuum and line emission ratios, finding an offset between them that can be related to microlensing. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

PhysicsOptical fiberbusiness.industryGravitational lensing formalismStrong gravitational lensingAstronomy and AstrophysicsQuasarAstrophysicsGravitational microlensinglaw.inventionTelescopeOpticsGravitational lensSpace and Planetary SciencelawbusinessWeak gravitational lensingAstronomische Nachrichten
researchProduct

Cosmological searches for a non-cold dark matter component

2017

We explore an extended cosmological scenario where the dark matter is an admixture of cold and additional non-cold species. The mass and temperature of the non-cold dark matter particles are extracted from a number of cosmological measurements. Among others, we consider tomographic weak lensing data and Milky Way dwarf satellite galaxy counts. We also study the potential of these scenarios in alleviating the existing tensions between local measurements and Cosmic Microwave Background (CMB) estimates of the $S_8$ parameter, with $S_8=\sigma_8\sqrt{\Omega_m}$, and of the Hubble constant $H_0$. In principle, a sub-dominant, non-cold dark matter particle with a mass $m_X\sim$~keV, could achieve…

PhysicsParticle physicsCold dark matterCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsHot dark matterDark matterScalar field dark matterFOS: Physical sciencesLambda-CDM modelAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences0103 physical sciencesMixed dark matterWarm dark matter010303 astronomy & astrophysicsWeak gravitational lensingAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct