Search results for "Gravity"

showing 10 items of 537 documents

GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences

2018

The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $\Omega_{\rm…

Design sensitivityneutron star: binarygravitational radiation: stochasticAstronomyX-ray binaryGeneral Physics and AstronomyAstrophysicsAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologylocalizationGravitational wave backgroundGravitational Waves Neutron Stars Stochastic Background Virgo LIGOblack holeLIGOstochastic modelQCQBPhysicsGAMMA-RAY BURSTSSignal to noise ratioStochastic systemsBlack holesGravitational effectsarticleAstrophysics::Instrumentation and Methods for AstrophysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSING[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave sources Experimental studies of gravity Gravitational WavesGravitationBinary neutron starsX-ray bursterBinsAstrophysics::High Energy Astrophysical PhenomenaMERGERSFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesgravitational radiation: direct detectionBinary pulsarNeutron starsSTAR-FORMATIONPhysics and Astronomy (all)General Relativity and Quantum CosmologyBinary black holebinary: coalescence0103 physical sciencesFrequency bandsddc:530RATESINTERFEROMETERS010306 general physicsAstrophysics::Galaxy AstrophysicsNeutronsGravitational Waves010308 nuclear & particles physicsGravitational waveVirgogravitational radiation: backgroundgravitational radiationAstronomyNeutron Stars530 Physikbinary: compactsensitivityStarsLIGObackground: stochasticEVOLUTIONsignal noise ratioVIRGOPhysics and Astronomyblack hole: binarygravitational radiation: emissionStellar black holeStochastic BackgroundDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikHIGH-REDSHIFTneutron star: coalescencePhysical Review Letters
researchProduct

Centrifuge tests on strip footings on sand with a weak layer

2017

Tests on small-scale physical models of a strip footing resting on a dense sand bed containing a thin horizontal weak soil layer were carried out at normal gravity (1 g ). The results, reported in a companion paper, point out that the weak layer plays an important role in the failure mechanism and the ultimate bearing capacity of the footing if it falls within the ground volume relevant to the behaviour of the sand–footing system. The same problem was also investigated by means of centrifuge tests on reduced-scale models at 25 g and 40 g . The results of these tests, reported and discussed in this paper, confirm that failure mechanisms are governed substantially by the presence of the weak…

CentrifugeGravity (chemistry)Physical modelgeotechnical engineering models (physical)shallow foundationsSettore ICAR/07 - Geotecnicageotechnical engineering0211 other engineering and technologiesgeotechnical engineering/models (physical)/shallow foundations02 engineering and technologyGeotechnical Engineering and Engineering GeologyCritical valueNO020303 mechanical engineering & transports0203 mechanical engineeringShallow foundationVolume (thermodynamics)Geotechnical engineeringBearing capacitymodels (physical)Layer (electronics)Geology021101 geological & geomatics engineeringshallow foundations
researchProduct

The euro impact on trade. Long run evidence with structural breaks

2012

In this paper we present new evidence on the euro effect on trade. We use a data set containing all bilateral combinations in a panel of 26 OECD countries during the period 1967-2008. From a methodological point of view, we implement a new generation of tests that allow solving some of the problems derived from the non-stationary nature of the data. To this aim we apply panel tests that account for the presence of cross-section dependence as well as discontinuities in the non-stationary panel data. We test for cointegration between the variables using panel cointegration tests, especially the ones proposed by Banerjee and Carrióni- Silvestre (2010). We also efficiently estimate the long-run…

Gravity models; trade; panel cointegration; common factors; structural breaks; cross-section dependence.
researchProduct

Sedimentation properties of chitosomal chitin synthetase from the wild-type strain and the 'slime' variant of Neurospora crassa.

1989

Marked differences in the pattern of sedimentation of cellular structures were observed after isopycnic centrifugation of crude cell-free preparations from the Neurospora crassa wall-less 'slime' variant and mycelial wild-type strain. Kinetic studies of particle sedimentation showed that the various types of subcellular components, as revealed by turbidity, UV absorption, polypeptide patterns, and chitin synthetase activity determinations, sediment independently of one another. An important feature was the finding that chitin synthetase from 'slime' peaked at a median specific gravity of 1.1201 +/- 0.0036, whereas that from wild-type strain sedimented at a higher buoyant density (specific g…

BiophysicsCentrifugation IsopycnicBiochemistryNeurospora crassaCell wallchemistry.chemical_compoundChitinCentrifugation Density GradientMolecular BiologyPolyacrylamide gel electrophoresisSpecific GravityDifferential centrifugationChitin SynthaseOrganellesbiologyStrain (chemistry)Neurospora crassafungiCrassaGenetic VariationSedimentationbiology.organism_classificationcarbohydrates (lipids)Molecular WeightKineticsMicroscopy ElectronNeurosporaBiochemistrychemistryGlucosyltransferasesElectrophoresis Polyacrylamide GelSpectrophotometry UltravioletBiochimica et biophysica acta
researchProduct

Modular fluxes, elliptic genera, and weak gravity conjectures in four dimensions

2019

We analyse the Weak Gravity Conjecture for chiral four-dimensional F-theory compactifications with N=1 supersymmetry. Extending our previous work on nearly tensionless heterotic strings in six dimensions, we show that under certain assumptions a tower of asymptotically massless states arises in the limit of vanishing coupling of a U(1) gauge symmetry coupled to gravity. This tower contains super-extremal states whose charge-to-mass ratios are larger than those of certain extremal dilatonic Reissner-Nordstrom black holes, precisely as required by the Weak Gravity Conjecture. Unlike in six dimensions, the tower of super-extremal states does not always populate a charge sub-lattice. The main t…

High Energy Physics - TheoryNuclear and High Energy PhysicsGravity (chemistry)FOS: Physical sciencesF-TheoryTopological Strings01 natural sciencesTheoretical physicsGeneral Relativity and Quantum CosmologyHigh Energy Physics::TheorySuperstrings and Heterotic Strings0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsGauge symmetryPhysicsHeterotic string theory010308 nuclear & particles physicshep-thCharge (physics)SupersymmetryF-theoryHigh Energy Physics - Theory (hep-th)lcsh:QC770-798String DualityMirror symmetryParticle Physics - TheoryString dualityJournal of High Energy Physics
researchProduct

Quantum gravitational decoherence from fluctuating minimal length and deformation parameter at the Planck scale

2020

Schemes of gravitationally induced decoherence are being actively investigated as possible mechanisms for the quantum-to-classical transition. Here, we introduce a decoherence process due to quantum gravity effects. We assume a foamy quantum spacetime with a fluctuating minimal length coinciding on average with the Planck scale. Considering deformed canonical commutation relations with a fluctuating deformation parameter, we derive a Lindblad master equation that yields localization in energy space and decoherence times consistent with the currently available observational evidence. Compared to other schemes of gravitational decoherence, we find that the decoherence rate predicted by our mo…

High Energy Physics - TheoryLength scaleQuantum decoherenceScienceQuantum physicsGeneral Physics and AstronomyFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Quantum spacetime01 natural sciencesGeneral Relativity and Quantum CosmologyArticleGeneral Biochemistry Genetics and Molecular BiologyGravitation0103 physical sciencesMaster equation010306 general physicsQuantumCondensed Matter - Statistical MechanicsPhysicsMesoscopic physicsMultidisciplinaryStatistical Mechanics (cond-mat.stat-mech)010308 nuclear & particles physicsQGeneral ChemistryClassical mechanicsHigh Energy Physics - Theory (hep-th)Quantum gravityQuantum Physics (quant-ph)Theoretical physics
researchProduct

On eleven-dimensional supergravity and chern?SIMONS Theory

2012

We probe in some depth into the structure of eleven-dimensional, osp(32|1)-based Chern-Simons supergravity, as put forward by Troncoso and Zanelli (TZ) in 1997. We find that the TZ Lagrangian may be cast as a polynomial in 1/l, where l is a length, and compute explicitly the first three dominant terms. The term proportional to 1/l^9 turns out to be essentially the Lagrangian of the standard 1978 supergravity theory of Cremmer, Julia and Scherk, thus establishing a previously unknown relation between the two theories. The computation is nontrivial because, when written in a sufficiently explicit way, the TZ Lagrangian has roughly one thousand non-explicitly Lorentz-covariant terms. Specially…

M-theoryPhysicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsParticle physicsPolynomialSupergravityChern–Simons theoryStructure (category theory)FOS: Physical sciencesMathematical Physics (math-ph)Term (logic)High Energy Physics - Theory (hep-th)Higher-dimensional supergravityAlgebraic numberMathematical PhysicsMathematical physics
researchProduct

Born-Infeld gravity and its functional extensions

2014

We investigate the dynamics of a family of functional extensions of the (Eddington-inspired) Born-Infeld gravity theory, constructed with the inverse of the metric and the Ricci tensor. We provide a generic formal solution for the connection and an Einstein-like representation for the metric field equations of this family of theories. For particular cases we consider applications to the early-time cosmology and find that non-singular universes with a cosmic bounce are very generic and robust solutions.

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsFOS: Physical sciencesClassical field theoryRicci flowGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyClassical unified field theoriesTheoretical physicsEinstein tensorsymbols.namesakeHigh Energy Physics - Theory (hep-th)Born–Infeld modelsymbolsRicci decompositionf(R) gravityRicci curvaturePhysical Review D
researchProduct

Small-scale mixing processes enhancing troposphere-to-stratosphere transport by pyro-cumulonimbus storms

2007

Abstract. Deep convection induced by large forest fires is an efficient mechanism for transport of aerosol particles and trace gases into the upper troposphere and lower stratosphere (UT/LS). For many pyro-cumulonimbus clouds (pyroCbs) as well as other cases of severe convection without fire forcing, radiometric observations of cloud tops in the thermal infrared (IR) reveal characteristic structures, featuring a region of relatively high brightness temperatures (warm center) surrounded by a U-shaped region of low brightness temperatures. We performed a numerical simulation of a specific case study of pyroCb using a non-hydrostatic cloud resolving model with a two-moment cloud microphysics p…

ConvectionTropospherePhysicsAtmospheric ScienceBrightnessMeteorologyThermalGravity waveAtmospheric sciencesStratosphereTrace gasAerosolAtmospheric Chemistry and Physics
researchProduct

Fractal Spacetime Structure in Asymptotically Safe Gravity

2005

Four-dimensional Quantum Einstein Gravity (QEG) is likely to be an asymptotically safe theory which is applicable at arbitrarily small distance scales. On sub-Planckian distances it predicts that spacetime is a fractal with an effective dimensionality of 2. The original argument leading to this result was based upon the anomalous dimension of Newton's constant. In the present paper we demonstrate that also the spectral dimension equals 2 microscopically, while it is equal to 4 on macroscopic scales. This result is an exact consequence of asymptotic safety and does not rely on any truncation. Contact is made with recent Monte Carlo simulations.

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsSpacetimeTruncationMonte Carlo methodAsymptotic safety in quantum gravityFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum Cosmologysymbols.namesakeClassical mechanicsFractalHigh Energy Physics - Theory (hep-th)symbolsEinsteinConstant (mathematics)Quantum
researchProduct