Search results for "Gravity"
showing 10 items of 537 documents
A minimal length from the cutoff modes in asymptotically safe quantum gravity
2005
Within asymptotically safe Quantum Einstein Gravity (QEG), the quantum 4-sphere is discussed as a specific example of a fractal spacetime manifold. The relation between the infrared cutoff built into the effective average action and the corresponding coarse graining scale is investigated. Analyzing the properties of the pertinent cutoff modes, the possibility that QEG generates a minimal length scale dynamically is explored. While there exists no minimal proper length, the QEG sphere appears to be "fuzzy" in the sense that there is a minimal angular separation below which two points cannot be resolved by the cutoff modes.
Quantum gravitational decoherence from fluctuating minimal length and deformation parameter at the Planck scale
2020
Schemes of gravitationally induced decoherence are being actively investigated as possible mechanisms for the quantum-to-classical transition. Here, we introduce a decoherence process due to quantum gravity effects. We assume a foamy quantum spacetime with a fluctuating minimal length coinciding on average with the Planck scale. Considering deformed canonical commutation relations with a fluctuating deformation parameter, we derive a Lindblad master equation that yields localization in energy space and decoherence times consistent with the currently available observational evidence. Compared to other schemes of gravitational decoherence, we find that the decoherence rate predicted by our mo…
BPS preons in M-theory and supergravity
2007
7 pages.-- PACS nrs.: 11.30.Pb, 11.25.-w, 04.65.+e, 11.10.Kk.-- ISI Article Identifier: 000247103400029.-- ArXiv pre-print available at: http://arxiv.org/abs/hep-th/0702099
Infrared lessons for ultraviolet gravity: the case of massive gravity and Born-Infeld
2014
We generalize the ultraviolet sector of gravitation via a Born-Infeld action using lessons from massive gravity. The theory contains all of the elementary symmetric polynomials and is treated in the Palatini formalism. We show how the connection can be solved algebraically to be the Levi-Civita connection of an effective metric. The non-linearity of the algebraic equations yields several branches, one of which always reduces to General Relativity at low curvatures. We explore in detail a {\it minimal} version of the theory, for which we study solutions in the presence of a perfect fluid with special attention to the cosmological evolution. In vacuum we recover Ricci-flat solutions, but also…
New scalar compact objects in Ricci-based gravity theories
2019
Taking advantage of a previously developed method, which allows to map solutions of General Relativity into a broad family of theories of gravity based on the Ricci tensor (Ricci-based gravities), we find new exact analytical scalar field solutions by mapping the free-field static, spherically symmetric solution of General Relativity (GR) into quadratic $f(R)$ gravity and the Eddington-inspired Born-Infeld gravity. The obtained solutions have some distinctive feature below the would-be Schwarzschild radius of a configuration with the same mass, though in this case no horizon is present. The compact objects found include wormholes, compact balls, shells of energy with no interior, and a new …
Galactic rotation curves in hybrid metric-Palatini gravity
2013
Generally, the dynamics of test particles around galaxies, as well as the corresponding mass deficit, is explained by postulating the existence of a hypothetical dark matter. In fact, the behavior of the rotation curves shows the existence of a constant velocity region, near the baryonic matter distribution, followed by a quick decay at large distances. In this work, we consider the possibility that the behavior of the rotational velocities of test particles gravitating around galaxies can be explained within the framework of the recently proposed hybrid metric-Palatini gravitational theory. The latter is constructed by modifying the metric Einstein-Hilbert action with an f(R) term in the P…
Brane-world and loop cosmology from a gravity–matter coupling perspective
2015
We show that the effective brane-world and the loop quantum cosmology background expansion histories can be reproduced from a modified gravity perspective in terms of an $f(R)$ gravity action plus a $g(R)$ term non-minimally coupled with the matter Lagrangian. The reconstruction algorithm that we provide depends on a free function of the matter density that must be specified in each case and allows to obtain analytical solutions always. In the simplest cases, the function $f(R)$ is quadratic in the Ricci scalar, $R$, whereas $g(R)$ is linear. Our approach is compared with recent results in the literature. We show that working in the Palatini formalism there is no need to impose any constrai…
Efficient resummation of high post-Newtonian contributions to the binding energy
2021
A factorisation property of Feynman diagrams in the context the Effective Field Theory approach to the compact binary problem has been recently employed to efficiently determine the static sector of the potential at fifth post-Newtonian (5PN) order. We extend this procedure to the case of non-static diagrams and we use it to fix, by means of elementary algebraic manipulations, the value of more than one thousand diagrams at 5PN order, that is a substantial fraction of the diagrams needed to fully determine the dynamics at 5PN. This procedure addresses the redundancy problem that plagues the computation of the binding energy with respect to more "efficient" observables like the scattering an…
Hairy black-holes in shift-symmetric theories
2020
Scalar hair of black holes in theories with a shift symmetry are constrained by the no-hair theorem of Hui and Nicolis, assuming spherical symmetry, time-independence of the scalar field and asymptotic flatness. The most studied counterexample is a linear coupling of the scalar with the Gauss-Bonnet invariant. However, in this case the norm of the shift-symmetry current $J^2$ diverges at the horizon casting doubts on whether the solution is physically sound. We show that this is not an issue since $J^2$ is not a scalar quantity, since $J^\mu$ is not a diff-invariant current in the presence of Gauss-Bonnet. The same theory can be written in Horndeski form with a non-analytic function $G_5 \s…
Cosmological Constant and Local Gravity
2010
We discuss the linearization of Einstein equations in the presence of a cosmological constant, by expanding the solution for the metric around a flat Minkowski space-time. We demonstrate that one can find consistent solutions to the linearized set of equations for the metric perturbations, in the Lorentz gauge, which are not spherically symmetric, but they rather exhibit a cylindrical symmetry. We find that the components of the gravitational field satisfying the appropriate Poisson equations have the property of ensuring that a scalar potential can be constructed, in which both contributions, from ordinary matter and Lambda > 0, are attractive. In addition, there is a novel tensor potentia…