Search results for "Gray Code"

showing 10 items of 32 documents

A loopless algorithm for generating the permutations of a multiset

2003

AbstractMany combinatorial structures can be constructed from simpler components. For example, a permutation can be constructed from cycles, or a Motzkin word from a Dyck word and a combination. In this paper we present a constructor for combinatorial structures, called shuffle on trajectories (defined previously in a non-combinatorial context), and we show how this constructor enables us to obtain a new loopless generating algorithm for multiset permutations from similar results for simpler objects.

Discrete mathematicsMultisetMathematics::CombinatoricsGeneral Computer ScienceMultiset permutationsLoopless algorithmStructure (category theory)Context (language use)Gray codesTheoretical Computer ScienceCombinatoricsGray codePermutationLoopless generating algorithmsShuffle combinatorial objectsBinomial coefficientWord (computer architecture)Computer Science::Formal Languages and Automata TheoryMathematicsMathematicsofComputing_DISCRETEMATHEMATICSComputer Science(all)Theoretical Computer Science
researchProduct

A fractal set from the binary reflected Gray code

2005

The permutation associated with the decimal expression of the binary reflected Gray code with $N$ bits is considered. Its cycle structure is studied. Considered as a set of points, its self-similarity is pointed out. As a fractal, it is shown to be the attractor of a IFS. For large values of $N$ the set is examined from the point of view of time series analysis

Discrete mathematicsPermutation (music)FísicaGeneral Physics and AstronomyBinary numberFOS: Physical sciencesStatistical and Nonlinear PhysicsNonlinear Sciences - Chaotic DynamicsDecimalGray codeSet (abstract data type)FractalAttractorPoint (geometry)Chaotic Dynamics (nlin.CD)Mathematical PhysicsMathematics
researchProduct

Loop-free Gray code algorithm for the e-restricted growth functions

2011

The subject of Gray codes algorithms for the set partitions of {1,2,...,n} had been covered in several works. The first Gray code for that set was introduced by Knuth (1975) [5], later, Ruskey presented a modified version of [email protected]?s algorithm with distance two, Ehrlich (1973) [3] introduced a loop-free algorithm for the set of partitions of {1,2,...,n}, Ruskey and Savage (1994) [9] generalized [email protected]?s results and give two Gray codes for the set of partitions of {1,2,...,n}, and recently, Mansour et al. (2008) [7] gave another Gray code and loop-free generating algorithm for that set by adopting plane tree techniques. In this paper, we introduce the set of e-restricte…

Discrete mathematicsPrefix codeGeneralizationOrder (ring theory)Computer Science ApplicationsTheoretical Computer ScienceCombinatoricsSet (abstract data type)Gray codeTree (descriptive set theory)Signal ProcessingFunction representationRepresentation (mathematics)AlgorithmInformation SystemsMathematicsInformation Processing Letters
researchProduct

Generating a Gray code for prefix normal words in amortized polylogarithmic time per word

2020

A prefix normal word is a binary word with the property that no substring has more $1$s than the prefix of the same length. By proving that the set of prefix normal words is a bubble language, we can exhaustively list all prefix normal words of length $n$ as a combinatorial Gray code, where successive strings differ by at most two swaps or bit flips. This Gray code can be generated in $\Oh(\log^2 n)$ amortized time per word, while the best generation algorithm hitherto has $\Oh(n)$ running time per word. We also present a membership tester for prefix normal words, as well as a novel characterization of bubble languages.

FOS: Computer and information sciencesGeneral Computer ScienceFormal Languages and Automata Theory (cs.FL)Property (programming)combinatorial Gray codeComputer Science - Formal Languages and Automata TheoryData_CODINGANDINFORMATIONTHEORY0102 computer and information sciences02 engineering and technologyCharacterization (mathematics)01 natural sciencesTheoretical Computer ScienceCombinatoricsSet (abstract data type)Gray codeComputer Science - Data Structures and Algorithms0202 electrical engineering electronic engineering information engineeringData Structures and Algorithms (cs.DS)MathematicsAmortized analysisSettore INF/01 - Informaticaprefix normal wordsSubstringcombinatorial generationPrefixjumbled pattern matching010201 computation theory & mathematics020201 artificial intelligence & image processingbinary languagesprefix normal words binary languages combinatorial Gray code combinatorial generation jumbled pattern matchingWord (computer architecture)Theoretical Computer Science
researchProduct

More restrictive Gray codes for some classes of pattern avoiding permutations

2009

In a recent article [W.M.B. Dukes, M.F. Flanagan, T. Mansour, V. Vajnovszki, Combinatorial Gray codes for classes of pattern avoiding permutations, Theoret. Comput. Sci. 396 (2008) 35-49], Dukes, Flanagan, Mansour and Vajnovszki present Gray codes for several families of pattern avoiding permutations. In their Gray codes two consecutive objects differ in at most four or five positions, which is not optimal. In this paper, we present a unified construction in order to refine their results (or to find other Gray codes). In particular, we obtain more restrictive Gray codes for the two Wilf classes of Catalan permutations of length n; two consecutive objects differ in at most two or three posit…

Fibonacci number010103 numerical & computational mathematics0102 computer and information sciences01 natural sciencesComputer Science ApplicationsTheoretical Computer ScienceCatalan numberCombinatoricsGray codePermutation010201 computation theory & mathematics[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]Signal ProcessingOrder (group theory)0101 mathematicsComputingMilieux_MISCELLANEOUSBinomial coefficientInformation SystemsMathematicsInformation Processing Letters
researchProduct

Minimal change list for Lucas strings and some graph theoretic consequences

2005

AbstractWe give a minimal change list for the set of order p length-n Lucas strings, i.e., the set of length-n binary strings with no p consecutive 1's nor a 1ℓ prefix and a 1m suffix with ℓ+m⩾p. The construction of this list proves also that the order p n-dimensional Lucas cube has a Hamiltonian path if and only if n is not a multiple of p+1, and its second power always has a Hamiltonian path.

Fibonacci numberGeneral Computer ScienceLucas sequenceCube (algebra)Fibonacci and Lucas stringHamiltonian pathTheoretical Computer ScienceCombinatoricsGray codeSet (abstract data type)symbols.namesakesymbolsHamiltonian pathOrder (group theory)Minimal change listSuffixGray codeLucas cubeComputer Science(all)MathematicsTheoretical Computer Science
researchProduct

Gray code for permutations with a fixed number of cycles

2007

AbstractWe give the first Gray code for the set of n-length permutations with a given number of cycles. In this code, each permutation is transformed into its successor by a product with a cycle of length three, which is optimal. If we represent each permutation by its transposition array then the obtained list still remains a Gray code and this allows us to construct a constant amortized time (CAT) algorithm for generating these codes. Also, Gray code and generating algorithm for n-length permutations with fixed number of left-to-right minima are discussed.

Golomb–Dickman constantPolynomial codeRestricted permutationsGenerating algorithms0102 computer and information sciences02 engineering and technology01 natural sciencesTheoretical Computer ScienceGray codeCombinatoricsPermutation[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]0202 electrical engineering electronic engineering information engineeringDiscrete Mathematics and CombinatoricsTransposition arrayComputingMilieux_MISCELLANEOUSMathematicsDiscrete mathematicsSelf-synchronizing codeAmortized analysisMathematics::CombinatoricsParity of a permutation020206 networking & telecommunicationsGray codes010201 computation theory & mathematicsConstant-weight codeMathematicsofComputing_DISCRETEMATHEMATICS
researchProduct

A trace partitioned Gray code forq-ary generalized Fibonacci strings

2015

AbstractWe provide a trace partitioned Gray code for the set of q-ary strings avoiding a pattern constituted by k consecutive equal symbols. The definition of this Gray code is based on two different constructions, according to the parity of q. This result generalizes, and is based on, a Gray code for binary strings avoiding k consecutive 0's.

Gray codeCombinatoricsDiscrete mathematicsAlgebra and Number TheoryFibonacci numberApplied MathematicsBinary stringsParity (mathematics)AnalysisMathematicsJournal of Discrete Mathematical Sciences and Cryptography
researchProduct

Two Reflected Gray Code-Based Orders on Some Restricted Growth Sequences

2014

We consider two order relations: that induced by the m-ary reflected Gray code and a suffix partitioned variation of it. We show that both of them when applied to some sets of restricted growth sequences still yield Gray codes. These sets of sequences are: subexcedant and ascent sequences, restricted growth functions and staircase words. In particular, we give the first suffix partitioned Gray codes for restricted growth f unctions and ascent sequences; these latter sequences code various combinatorial classes as interval orders, upper triangular matrices without zero rows and zero columns whose non-negative integer entries sum up to n, and certain pattern-avoiding permutations. For each Gr…

Gray codeCombinatoricsDiscrete mathematicsGeneral Computer ScienceCode (cryptography)Triangular matrixZero (complex analysis)Interval (graph theory)SuffixRowMathematicsInteger (computer science)The Computer Journal
researchProduct

Parallel Algorithms for Listing Well-Formed Parentheses Strings

1998

We present two cost-optimal parallel algorithms generating the set of all well-formed parentheses strings of length 2n with constant delay for each generated string. In our first algorithm we generate in lexicographic order well-formed parentheses strings represented by bitstrings, and in the second one we use the representation by weight sequences. In both cases the computational model is based on an architecture CREW PRAM, where each processor performs the same algorithm simultaneously on a different set of data. Different processors can access the shared memory at the same time to read different data in the same or different memory locations, but no two processors are allowed to write i…

Gray codeSet (abstract data type)Shared memoryHardware and ArchitectureComputer scienceString (computer science)Parallel algorithmParallel random-access machineLexicographical orderTime complexityAlgorithmSoftwareTheoretical Computer ScienceParallel Processing Letters
researchProduct