Search results for "Green's function"

showing 10 items of 35 documents

Levels of self-consistency in the GW approximation

2009

We perform $GW$ calculations on atoms and diatomic molecules at different levels of self-consistency and investigate the effects of self-consistency on total energies, ionization potentials and on particle number conservation. We further propose a partially self-consistent $GW$ scheme in which we keep the correlation part of the self-energy fixed within the self-consistency cycle. This approximation is compared to the fully self-consistent $GW$ results and to the $G W_0$ and the $G_0W_0$ approximations. Total energies, ionization potentials and two-electron removal energies obtained with our partially self-consistent $GW$ approximation are in excellent agreement with fully self-consistent $…

GW approximationSelf consistencyGeneral Physics and AstronomyFOS: Physical sciencesELECTRON-GASGreen's function methodsATOMSMOLECULESQuality (physics)IonizationPhysics - Chemical Physicsionisation potentialWAVE-FUNCTIONSKOOPMANS THEOREMPhysical and Theoretical ChemistryfysiikkaPhysicsChemical Physics (physics.chem-ph)total energyNONEQUILIBRIUM PROCESSESDiatomic moleculeTRANSPORTCondensed Matter - Other Condensed MatterYield (chemistry)GROUND-STATECORRELATION ENERGIESIonization energyAtomic physicsEXTENSIONOther Condensed Matter (cond-mat.other)
researchProduct

Nonequilibrium Green's function approach to strongly correlated few-electron quantum dots

2009

The effect of electron-electron scattering on the equilibrium properties of few-electron quantum dots is investigated by means of nonequilibrium Green's function theory. The ground and equilibrium states are self-consistently computed from the Matsubara (imaginary time) Green's function for the spatially inhomogeneous quantum dot system whose constituent charge carriers are treated as spin-polarized. To include correlations, the Dyson equation is solved, starting from a Hartree-Fock reference state, within a conserving (second-order) self-energy approximation where direct and exchange contributions to the electron-electron interaction are included on the same footing. We present results for…

KADANOFF-BAYM EQUATIONSFOS: Physical sciencesquantum dotsElectronelectron-electron interactionsSEMICONDUCTORSGreen's function methodsATOMSCondensed Matter - Strongly Correlated Electronssymbols.namesakeMOLECULESSYSTEMSQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Quantum statistical mechanicsKINETICSPhysicsstrongly correlated electron systemstotal energyCondensed Matter - Mesoscale and Nanoscale PhysicsStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicselectron-electron scatteringHOLE PLASMASCondensed Matter Physicsground statesImaginary timecarrier densityElectronic Optical and Magnetic MaterialsDistribution functionINITIAL CORRELATIONSQuantum dotGreen's functionSPECTRAL FUNCTIONSsymbolsStrongly correlated materialCRYSTALLIZATIONFermi gasPhysical Review. B: Condensed Matter and Materials Physics
researchProduct

Efficient and accurate computation of Green's function for the Poisson equation in rectangular waveguides

2009

[1] In this paper, a new algorithm for the fast and precise computation of Green's function for the 2-D Poisson equation in rectangular waveguides is presented. For this purpose, Green's function is written in terms of Jacobian elliptic functions involving complex arguments. A new algorithm for the fast and accurate evaluation of such Green's function is detailed. The main benefit of this algorithm is successfully shown within the frame of the Boundary Integral Resonant Mode Expansion method, where a substantial reduction of the computational effort related to the evaluation of the cited Green's function is obtained.

Laplace's equationMathematical analysisGreen's identitiesCondensed Matter PhysicsIntegral equationGreen's function for the three-variable Laplace equationsymbols.namesakeScreened Poisson equationGreen's functionsymbolsGeneral Earth and Planetary SciencesElectrical and Electronic EngineeringPoisson's equationGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)Rectangular functionMathematicsRadio Science
researchProduct

Polymer-metal plasmonic waveguide : passive and active components for integrated photonics

2009

Dielectric loaded surface plasmon polariton waveguides (DLSPPWs) enable transmission at a sub-wavelength scale of both electrical and plasmonic (optical waves at the interface between a metal and a dielectric) signals in the same circuitry. Moreover, the use of a polymer as the dielectric load enables the functionalization of DLSPPWs. Therefore, this configuration is of great interest for integrated photonic applications. However, DLSPPWs suffer strong losses due to dissipation into the metal film. We address here the possibility of compensating the losses using a configuration analogous to an optical amplifier. We first set theoretical (effective index model), numerical (differential metho…

Microscopie à fuites radiativesGain optiquePhotonique intégrée[PHYS.PHYS]Physics [physics]/Physics [physics]Leakage Radiation Microscopy (LRM)Integrated photonicsEffective index modelDifferential methodMéthode de la fonction de GreenOptical gainGreen's function method[ PHYS.PHYS ] Physics [physics]/Physics [physics]Stimulated emission of surface plasmon polaritonplan image et plan de FourierModèle de l'indice effectifDielectric Loaded Surface Plasmon Polariton Waveguide (DLSPPW)Surface Plasmon Polariton (SPP)imaging plane and Fourier planeGuide plasmonique induit par un ruban diélectrique[PHYS.PHYS] Physics [physics]/Physics [physics]Plasmon-polariton de surfaceSPASERMéthode différentielleEmission stimulée de plasmon-polariton de surface
researchProduct

Ab-initio Calculation of the Properties of Permalloys Used in Electrical Machines

2006

In this paper an ab-initio calculation that allows to describe the main features of permalloys is presented. The calculation is bawd on Korringa-Kohn-Rostoker electronic structure method. The dependence of the magnetocryttalline anisotropy and of the magnetostriction on the concentration of non magnetic addiction is computed.

PermalloyMaterials scienceNon magneticCondensed matter physicsCondensed Matter::OtherAb initioMagnetostrictionElectronic structureGreen's functionMagnetocrystalline anisotropyCondensed Matter::Materials ScienceMagnetic anisotropyalloysAb initio quantum chemistry methodsPhysics::Atomic and Molecular Clusterselectron transport2006 12th Biennial IEEE Conference on Electromagnetic Field Computation
researchProduct

The generalized Kadanoff-Baym ansatz with initial correlations

2018

Within the non-equilibrium Green's function (NEGF) formalism, the Generalized Kadanoff-Baym Ansatz (GKBA) has stood out as a computationally cheap method to investigate the dynamics of interacting quantum systems driven out of equilibrium. Current implementations of the NEGF--GKBA, however, suffer from a drawback: real-time simulations require {\em noncorrelated} states as initial states. Consequently, initial correlations must be built up through an adiabatic switching of the interaction before turning on any external field, a procedure that can be numerically highly expensive. In this work, we extend the NEGF--GKBA to allow for {\em correlated} states as initial states. Our scheme makes i…

PhysicsKadanoff-Baym ansatzStrongly Correlated Electrons (cond-mat.str-el)ta114many-body theoryFOS: Physical sciencesNon-equilibrium thermodynamics02 engineering and technologyGreen's functionCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesSettore FIS/03 - Fisica della MateriaCondensed Matter - Strongly Correlated ElectronsImproved performanceFormalism (philosophy of mathematics)0103 physical sciencesExternal fieldStatistical physicskvanttifysiikka010306 general physics0210 nano-technologyAdiabatic processQuantumAnsatzPhysical Review B
researchProduct

On Green's function for cylindrically symmetric fields of polarized radiation

2009

Analytic expressions for Green's function describing the process of transfer of polarized radiation in homogeneous isotropic infinite medium in case of cylindrical symmetry and nonconservative scattering are obtained. The solution is based on the set of systems of Abel integral equations of the first kind obtained using the principle of superposition, and the known expression of Green's function for radiation fields with plane-parallel symmetry. Eigenvalue decompositions for the corresponding matrices of generalized spherical functions are found. Using this result the systems of Abel integral equations are diagonalized, and the final solution is obtained.

PhysicsRadiationIsotropyFunction (mathematics)Integral equationAtomic and Molecular Physics and OpticsSymmetry (physics)symbols.namesakeSuperposition principleGreen's functionsymbolsRadiative transferSpectroscopyEigenvalues and eigenvectorsMathematical physicsJournal of Quantitative Spectroscopy and Radiative Transfer
researchProduct

On Green's function for spherically symmetric problems of transfer of polarized radiation

2005

Analytic expressions for Green's function describing the process of transfer of polarized radiation in homogeneous isotropic infinite medium in case of spherical symmetry and nonconservative scattering are obtained. Spherical eigenfunctions of the homogeneous transfer equation are not used, due to their strong divergence; instead, direct transformation from plane-parallel to spherical symmetry is carried out, leading to convergent solutions. The possible existence of generalized eigenfunctions of homogeneous transfer equation is accounted for.

PhysicsRadiationScatteringIsotropyFunction (mathematics)EigenfunctionAtomic and Molecular Physics and Opticssymbols.namesakeClassical mechanicsGreen's functionsymbolsRadiative transferCircular symmetryDivergence (statistics)SpectroscopyJournal of Quantitative Spectroscopy and Radiative Transfer
researchProduct

Effective bias and potentials in steady-state quantum transport: A NEGF reverse-engineering study

2016

Using non-equilibrium Green’s functions combined with many-body perturbation theory, we have calculated steady-state densities and currents through short interacting chains subject to a finite electric bias. By using a steady-state reverse-engineering procedure, the effective potential and bias which reproduce such densities and currents in a non-interacting system have been determined. The role of the effective bias is characterised with the aid of the so-called exchange-correlation bias, recently introduced in a steady-state density-functionaltheory formulation for partitioned systems. We find that the effective bias (or, equivalently, the exchange-correlation bias) depends strongly on th…

PhysicsReverse engineeringHistorySteady state (electronics)Strongly Correlated Electrons (cond-mat.str-el)Condensed Matter - Mesoscale and Nanoscale PhysicsFOS: Physical sciencesInteraction strengthcomputer.software_genreComputer Science ApplicationsEducationCondensed Matter - Strongly Correlated ElectronsQuantum transportPartitioned systemsChain (algebraic topology)Mesoscale and Nanoscale Physics (cond-mat.mes-hall)Green's functionsStatistical physicsPerturbation theorycomplex systemscomputerJournal of Physics: Conference Series
researchProduct

One-particle Green's function

2013

In this chapter we get acquainted with the one-particle Green's function G , or simply the Green's function. The chapter is divided in three parts. In the first part (Section 6.1) we illustrate what kind of physical information can be extracted from the different Keldysh components of G . The aim of this first part is to introduce some general concepts without being too formal. In the second part (Section 6.2) we calculate the noninteracting Green's function. Finally in the third part (Sections 6.3 and 6.4) we consider the interacting Green's function and derive several exact properties. We also discuss other physical (and measurable) quantities that can be calculated from G and that are re…

Physicssymbols.namesakeCharacter (mathematics)Basis (linear algebra)Product (mathematics)Dirac (video compression format)Green's functionsymbolsFunction (mathematics)Space (mathematics)Wave functionMathematical physics
researchProduct