Search results for "Green's function"

showing 10 items of 35 documents

Conserving approximations: two-particle Green's function

2013

Physicssymbols.namesakeGreen's functionsymbolsParticleMathematical physics
researchProduct

Charge dynamics in molecular junctions: nonequilibrium Green's function approach made fast

2014

Real-time Green's function simulations of molecular junctions (open quantum systems) are typically performed by solving the Kadanoff-Baym equations (KBE). The KBE, however, impose a serious limitation on the maximum propagation time due to the large memory storage needed. In this work we propose a simplified Green's function approach based on the Generalized Kadanoff-Baym Ansatz (GKBA) to overcome the KBE limitation on time, significantly speed up the calculations, and yet stay close to the KBE results. This is achieved through a twofold advance: first we show how to make the GKBA work in open systems and then construct a suitable quasi-particle propagator that includes correlation effects …

Propagation timeWork (thermodynamics)SpeedupCondensed Matter - Mesoscale and Nanoscale Physicsta114Computer sciencePropagatorFOS: Physical sciencesNanotechnologyFunction (mathematics)Condensed Matter PhysicsElectronic Optical and Magnetic MaterialsSettore FIS/03 - Fisica della Materiasymbols.namesakeGreen's functionMesoscale and Nanoscale Physics (cond-mat.mes-hall)symbolsStatistical physicsQuantumAnsatz
researchProduct

Green’s function and existence of solutions for a third-order three-point boundary value problem

2019

The solutions of third-order three-point boundary value problem x‘‘‘ + f(t, x) = 0, t ∈ [a, b], x(a) = x‘(a) = 0, x(b) = kx(η), where η ∈ (a, b), k ∈ R, f ∈ C([a, b] × R, R) and f(t, 0) ≠ 0, are the subject of this investigation. In order to establish existence and uniqueness results for the solutions, attention is focused on applications of the corresponding Green’s function. As an application, also one example is given to illustrate the result. Keywords: Green’s function, nonlinear boundary value problems, three-point boundary conditions, existence and uniqueness of solutions.

Pure mathematicsthree-point boundary conditionsValue (computer science)010103 numerical & computational mathematicsFunction (mathematics)Green’s function01 natural sciences010101 applied mathematicsThird ordersymbols.namesakeexistence and uniqueness of solutionsModeling and SimulationGreen's functionsymbolsQA1-939nonlinear boundary value problemsOrder (group theory)Nonlinear boundary value problemBoundary value problemUniqueness0101 mathematicsAnalysisMathematicsMathematicsMathematical Modelling and Analysis
researchProduct

Existence of a unique solution for a third-order boundary value problem with nonlocal conditions of integral type

2021

The existence of a unique solution for a third-order boundary value problem with integral condition is proved in several ways. The main tools in the proofs are the Banach fixed point theorem and the Rus’s fixed point theorem. To compare the applicability of the obtained results, some examples are considered.

QA299.6-433Pure mathematicsintegral boundary conditionsBanach fixed point theoremBanach fixed-point theoremApplied MathematicsFixed-point theoremthird-order nonlinear boundary value problemsGreen’s functionType (model theory)Mathematical proofRus’s fixed point theoremThird ordersymbols.namesakeexistence and uniqueness of solutionsGreen's functionsymbolsBoundary value problemAnalysisMathematicsNonlinear Analysis: Modelling and Control
researchProduct

Dyadic Green's function for the electrically biased graphene-based multilayered spherical structures

2020

Abstract Dyadic Green's function for a multilayered spherical structure with alternating graphene-dielectric shells is extracted in this paper. To this end, the unknown expansion coefficients of the scattering superposition method are obtained by considering graphene local surface currents at the interface of two adjacent layers. To validate the formulas, the procedure of Mie scattering analysis employing our formulas is clarified and the extinction efficiencies of various graphene-based nanoparticles are computed. The possibility of using the proposed structure in the design of multi-band optical absorbers is discussed in detail. Moreover, a closed-form formula for obtaining the Purcell fa…

RadiationMaterials science010504 meteorology & atmospheric sciencesScatteringGrapheneMie scatteringPhysics::OpticsFunction (mathematics)01 natural sciencesAtomic and Molecular Physics and OpticsComputational physicslaw.inventionsymbols.namesakeDipolelawGreen's functionsymbolsSpontaneous emissionSpectroscopyExcitation0105 earth and related environmental sciencesJournal of Quantitative Spectroscopy and Radiative Transfer
researchProduct

Contour calculus for many-particle functions

2019

In non-equilibrium many-body perturbation theory, Langreth rules are an efficient way to extract real-time equations from contour ones. However, the standard rules are not applicable in cases that do not reduce to simple convolutions and multiplications. We introduce a procedure for extracting real-time equations from general multi-argument contour functions with an arbitrary number of arguments. This is done for both the standard Keldysh contour, as well as the extended contour with a vertical track that allows for general initial states. This amounts to the generalization of the standard Langreth rules to much more general situations. These rules involve multi-argument retarded functions …

Statistics and ProbabilityPhysicsnon-equilibrium Green's functionsFOS: Physical sciencesGeneral Physics and AstronomyStatistical and Nonlinear PhysicsMathematical Physics (math-ph)medicine.disease01 natural sciencesKeldysh formalism010305 fluids & plasmasLangreth rulesModeling and Simulation0103 physical sciencesquantum many-body theorymedicineCalculusParticleKeldysh formalism010306 general physicskvanttifysiikkaMathematical PhysicsCalculus (medicine)
researchProduct

A many-body approach to transport in quantum systems : From the transient regime to the stationary state

2022

We review one of the most versatile theoretical approaches to the study of time-dependent correlated quantum transport in nano-systems: the non-equilibrium Green's function (NEGF) formalism. Within this formalism, one can treat, on the same footing, inter-particle interactions, external drives and/or perturbations, and coupling to baths with a (piece-wise) continuum set of degrees of freedom. After a historical overview on the theory of transport in quantum systems, we present a modern introduction of the NEGF approach to quantum transport. We discuss the inclusion of inter-particle interactions using diagrammatic techniques, and the use of the so-called embedding and inbedding techniques w…

Statistics and ProbabilityTIME-DEPENDENT TRANSPORTKADANOFF-BAYM EQUATIONSGeneral Physics and AstronomyFOS: Physical sciencesnon-equilibrium Green's functionGREENS-FUNCTIONDENSITY-FUNCTIONAL THEORYCondensed Matter - Strongly Correlated ElectronsPhysics - Chemical PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)COHERENT TRANSPORTSINGLE-MOLECULEkvanttifysiikkamany-body correlationMathematical Physicsquantum transportMEAN-FIELD THEORYChemical Physics (physics.chem-ph)Quantum PhysicsANDERSON-HOLSTEIN MODELCondensed Matter - Mesoscale and Nanoscale PhysicsStrongly Correlated Electrons (cond-mat.str-el)Statistical and Nonlinear PhysicsCHARGE MIGRATIONModeling and Simulationnon-equilibrium Green’s functionQuantum Physics (quant-ph)SHOT-NOISE
researchProduct

Efficient Analysis of Arbitrarily Shaped Inductive Obstacles in Rectangular Waveguides Using a Surface Integral Equation Formulation

2007

In this paper we propose to use the Surface Integral Equation technique for the analysis of arbitrarily shaped Hplane obstacles in rectangular waveguides, which can contain both metallic and/or dielectric objects. The Green functions are formulated using both spectral and spatial images series, whose convergence behavior has been improved through several acceleration techniques. Proceeding in this way, the convergence of the series is not attached to the employment of any particular basis or test function, thus consequently increasing the flexibility of the implemented technique. In order to test the accuracy and numerical efficiency of the proposed method, results for practical microwave c…

Surface (mathematics)Componentes de guía de ondasWaveguide componentsAccelerationResonadores dieléctricosConvergence (routing)Electronic engineeringGreen's functionsMoment methodsElectrical and Electronic EngineeringIntegral equationsDiscontinuidades de ondas guíaMathematicsTeoría de la Señal y las ComunicacionesRadiationSeries (mathematics)Basis (linear algebra)Methods currentlyNumerical analysisMathematical analysisMétodos de momentosCondensed Matter PhysicsIntegral equationWaveguide discontinuitiesDielectric resonatorsEcuaciones integralesTest functions for optimizationFunciones GreenIntegral equation (IE)3325 Tecnología de las Telecomunicaciones
researchProduct

Computational and theoretical studies on lattice thermal conductivity and thermal properties of silicon clathrates

2016

The lattice thermal conductivity is usually an intrinsic property in the study of thermoelectricity. In particular, relatively low lattice thermal conductivity is usually a desired feature when higher thermoelectric efficiency is pursued. The mechanisms which lower the lattice thermal conductivity are not known in sufficient detail and deeper understanding about the phenomena is needed and if such understanding is achieved it can be used to design more efficient thermoelectric materials. In this thesis, the lattice thermal conductivity and other thermal properties of several silicon clathrates, which are known to be promising candidates for the thermoelectric applications, are studied by theoreti…

clathratespiiphononsmany-body perturbation theorykiteetCondensed Matter::Materials Sciencehilarakenneklatraatitpuolijohteetlämmön johtuminenthermal conductivityGreen's functionslattice dynamicslämpösähköiset materiaalitlämpölaajeneminenthermal expansionfononit
researchProduct

Multipactor radiation analysis within a waveguide region based on a frequency-domain representation of the dynamics of charged particles

2009

[EN] A technique for the accurate computation of the electromagnetic fields radiated by a charged particle moving within a parallel-plate waveguide is presented. Based on a transformation of the time-varying current density of the particle into a time-harmonic current density, this technique allows the evaluation of the radiated electromagnetic fields both in the frequency and time domains, as well as in the near- and far-field regions. For this purpose, several accelerated versions of the parallel-plate Green's function in the frequency domain have been considered. The theory has been successfully applied to the multipactor discharge occurring within a two metal-plates region. The proposed…

electromagnetic fieldsMultipactor effectElectromagnetic fieldcurrent densityImage theoryGreens-FunctionElectrodynamicsAcceleratorelectrodynamicsFinite difference time-domain analysisElectromagnetic radiationmicrowave switchesGreen's function methodslaw.inventionPeriodic StructuresOpticsBreakdownCurrent densitylawTEORIA DE LA SEÑAL Y COMUNICACIONESGreen's functionsFrequency-domain analysisfinite difference time-domain analysisEwald MethodPhysicsTeoría de la Señal y las Comunicaciones2-Dbusiness.industryElectromagnetic fieldsMicrowave switcheswaveguidesParallel plate waveguideCharged particleComputational physicsfrequency-domain analysisTransformation (function)Frequency domainModesDischarge3325 Tecnología de las TelecomunicacionesMultipactor effectbusinessWake-FieldWaveguidesWaveguideCurrent densitySimulationPhysical Review E
researchProduct